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PROBABILISTIC FINITE ELEMENT METHODS FOR

THE EVALUATION OF WOOD COMPOSITES

Abstract

by Wei Yang, M.S.
Washington State University
May 2000
Chair: William Cofer
Composite materials are increasingly being used in aerospace, marine, and
automotive structures. The application of composite materials to engineering fields has
spurred a major effort to analyze structural components made from them. Even though

composite materials provide unique advantages over their constituent counterparts, they

also present complex and challenging problems to analysts and designers.

The research of this thesis was directed to randomly distributed particulate-
reinforced wood composites (RDPR WC), which have highly heterogeneous
microstructures.  Apart from spatial variations in reinforcement distribution and
arrangement, the properties of the reinforcement particles are themselves orthotropic and
highly variable. Computational limitations have generally dictated that two-scale models
be explored in the study of particulate-reinforced composites. The effects of microscale
heterogeneity may be taken into account via the formulation of a material law to be
applied in a macroscale random model. To represent the random characteristics of RDPR

WC with varying reinforcement ratio and reinforcement orientation, finite element



methods and probability methods were combined in the study. The material properties
were then modelled as basic variables, each of which had an assumed probability
distribution. The analyses gave a reliability estimate for structures and sensitivity
estimates for basic variables, which are valuable results for both designers and
manufacturers. In this thesis, probabilistic finite element methods were successfully
introduced into the study and analysis of wood composites. Two-scale models kept the
computation in a manageable range and, at the same time, were able to represent the
complex microstructure of particulate-reinforced composites. The results of two simple
numerical examples also provided some practical ways to improve wood products in

manufacture.
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CHAPTER ONE

INTRODUCTION
Composite materials are increasingly being used in aerospace, marine, and
automotive structures. The application of composite materials to engineering fields has
spurred a major effort to analyze structural components made from them. Even though
composite materials provide unique advantages over their constituent counterparts, they
also present complex and challenging problems to analysts and designers. With the rapid
growth in the use of composite materials in many commercial products ranging from
sports equipment to high-performance aircraft, literature on composite materials has

proliferated.

Much attention has been focused on the finite element analysis of fiber-reinforced
or particulate-reinforced metal matrix composites. Originally, they were studied by using
self-consistent schemes which are based on a model consisting of a single inclusion in an
infinite matrix (Duva, 1984). Deformation and failure within discontinuously reinforced
composites have been investigated using axisymmetric “unit cell” models with
reinforcement in different shapes (Bao, Hutchinson and McMeeking, 1991). In this
approach, the composite is modelled as a periodic array of identical revolutional unit
cells, each containing a reinforcement particle dimensioned to represent the overall
reinforcement volume fraction. Three-dimensional arrays are also used in analyzing
longitudinally aligned cylinder models, both transversely aligned and staggered (Levy
and Papazian, 1990). Both models captured the basic features of the stress-strain curve
of metal matrix composites, but overestimated the initial yielding. The difference

between the results from the two models is diminished as the particle aspect ratio (i.e. the



ratio of cylinder length, [/, over cylinder diameter, d) is decreased. A
micromechanically based analytical continuum model was developed by Zhu and Zbib
(1993). There, the composite was also idealized as a uniformly distributed periodic array
of unit cells. Each unit cell consisted of a rigid inclusion surrounded by a plastically
deforming material. The results were in good agreement with numerical analyses carried

out earlier.

In practice, however, particulate-reinforced composites have highly heterogeneous
microstructures.  Apart from spatial variations in reinforcement distribution and
arrangement, the properties of the reinforcement particles are themselves orthotropic and
highly variable. Modelling a material as a self-consistent model or periodic array of
identical cells implies that only one single inclusion exists in the matrix or that every
single cell in the material behaves identically. This is physically unrealistic, and ignores
the effects from particulate clustering and orientation. To address these issues, “random
unit cell” models were developed (Brockenbrough, Suresh and Wieneche, 1991). Here, a
number of particles are randomly distributed in a unit cell. But this approach is
computationally intensive. High numbers of elements are required even in relatively

coarse meshes.

Computational limitations have generally dictated that two-scale models be
explored in the study of particulate-reinforced composites. The effects of microscale
heterogeneity may be taken into account via the formulation of a material law to be
applied in a macroscale random unit cell model. Leggoe, Mammoli, Bush and Hu (1998)
modelled deformation in particulate-reinforced metal matrix composites with locally

varying reinforcement volume fraction using a two-scale finite element approach. The



analysis results of axisymmetric unit cell models were used to define the constitutive
response of mesoscale regions possessing varying volume fractions. Macroscale
response was then investigated using two- and three-dimensional “random arrays” of
finite elements, in which element properties were randomly assigned in line with a

Gaussian distribution.

In comparison with that of metal-matrix composites, research for wood composites is
underdeveloped, even though a variety of particulate-reinforced wood composites are
available for use as an alternative to plain wood. Thus, the objective of this thesis is to
apply the above finite element analysis methods and probabilistic methods, which will be
introduced in the following, to studying randomly distributed particulate-reinforced wood
composites (RDPR WC). Variations need to be introduced into the material properties at
different locations to represent the characteristics of randomly reinforced composites by
assigning random values to the reinforcement volume fraction and the reinforcement
orientation for each element group. The analysis results showing the effects from the
randomness of different properties should be able to provide designers and manufacturers

some general idea about the relative importance of these factors.

Until fairly recently there has been a tendency for structural engineering to be
dominated by deterministic thinking, characterized in design calculations by the use of
specified minimum material properties. It is now widely recognized, however, that some
risk of unacceptable structural performance must be tolerated. The main object of
structural design is therefore to ensure, at an acceptable level of probability, that a
structure will not become unfit for its intended purpose at any time during its specified

design life. There are various sources of uncertainty in structural design. External loads,



environmental factors, material properties, and geometry of structures all possess some

inherent variability.

Structural analyses which combine the finite element method and the theory of
probability or statistics were initiated in the 1970’s. Such analysis techniques are usually
denoted as probabilistic or stochastic finite element analysis. There are three basic types
of stochastic finite element methods: simulation methods, perturbation methods, and
reliability methods (Liu and Der Kiureghian, 1989). The direct Monte Carlo simulation
method was used in many early works in stochastic finite element analysis (Astill,
Nosseir and Shinozuka, 1972; Shinozuka and Lenoe, 1976). This method has the
advantage that it is adaptable to all types of problems and the results can be obtained to
any desired accuracy. However, for practical problems with many random or small
probabilities, this procedure is usually too expensive, since a large number of solutions
are needed to obtain reliable results. The perturbation method involves the first- or
second-order Taylor series expansion of the terms in the governing equation of the
structure around the mean values of the random variables. Handa and Anderson (1981)
applied this method to a beam and a truss structure to estimate the first two statistical
moments of structural displacements and stresses. Hisada and Nakagiri (1980 and 1981)
used the first- and second-order perturbation methods on linear and nonlinear problems.
However, this method yields satisfactory results only when the variations of the random
variables are small. Furthermore, since the perturbation methods are unable to give
reliability evaluations, they are not suitable for use in the safety assessment of structures.
The reliability methods aim at evaluating the failure probabilities of structures. The first-

order reliability method was used by Der Kiureghian and Ke (1985, 1988) for static



analysis of linear structures with random properties. Furthermore, Liu and Der
Kiureghian (1988) used the first- and second-order reliability methods for static analysis

of geometrically nonlinear trusses.

In the following chapters, the two-scale finite element reliability methods were
studied and applied to RDPR WC'’s. In Chapter 2, general formulations of the structural
reliability problem and the first- and second-order reliability methods (FORM and
SORM) are discussed. Chapter 3 contains the finite element formulation of the general
2-D isoparametric 8-node element, which was used in the elastic analyses in this thesis.
Chapter 4 discusses the microscale models carried out in ABAQUS and the finite element
reliability program CALREL-FEMCOD which was used to combine the probability
calculation and the macroscale finite element analysis. In Chapter 5, the CALREL-
FEMCOD program and the constitutive law from ABAQUS models were applied to two

numerical examples. Conclusions and discussions are given in Chapter 6.



CHAPTER TWO
STRUCTURAL RELIABILITY
BASIC THEORY
Methods of structural reliability analysis, employing concepts of probability and
statistics, account for the uncertain nature of structures and their environments. In recent
years, robust and accurate techniques for computing probabilities of failure have been

developed.

Two fundamental assumptions are made for the structural reliability problems
considered here. First, the structure may fail in any of a finite number of modes, and
with respect to each mode it is either in a safe state or in a failure state. For each mode,
the state of the structure is determined by the value of a limit-state function. Second, the
uncertainties in the structure and its environment are assumed to be modelled by random
variables. These may include the variabilities in the material properties, the structural
shape, and the external loads. In this thesis, only the first category, the effects of

uncertainties in materials, will be investigated. The set of basic random variables

describing these uncertainties is represented by a vector V =[V,,---,V,1".

> n

The limit states of a structure are usually defined in terms of structural responses and
response thresholds. The response thresholds may be included in the vector V' if they are
also random in nature. The structural responses, denoted by a vector S, are functions of

the basic random variables, i.e.,

S=S®¥) 2-1)



The mapping from V' to S 1is denoted the mechanical transformation of the
structure. Only in some special cases is it possible to get an analytical expression for this
transformation. Otherwise, the transformation is in an algorithmic form, such as a finite

element code.

An explicit function of V' and S, g(V,S), is usually used to represent the limit-

state function for a given failure mode. However, it is still an implicit function of the
basic variables V' if the mechanical transformation in Eq. 2-1 is taken into account.

Thus, the probability of failure in the mode of interest is given by

P, = IfV (v)dv (2-2)

F={g(v,s)<0; (2-3)

where f,(v) is the joint probability density function (PDF) of V. The set g(v,s)<0

defines the failure state. Even though the expression for the failure probability appears
simple, in practice it is almost impossible to perform the multi-fold integral directly,
either analytically or numerically. This is because the limit-state function is implicit of
V' in the integration domain and the number of basic random variables is often very
large. Hence, alternative methods are needed. The difference between the various
reliability methods lies in the approach used for evaluating the multi-fold integral in Eq.

2-2.

Analytical integration of the convolution integral in Eq. 2-2 is possible only for some
very special cases of limited practical interest (Liu and Der Kiureghian, 1989).

Numerical solutions like the direct Monte Carlo simulation techniques involve ‘sampling



randomly’ to simulate artificially a large number of experiments and to observe the

results. In the case of analysis for structural reliability, this means that a sample value v,

is arbitrarily chosen to represent each random variable V,. The limit state function
g(v,5) =0 is then checked. If the limit state is violated (i.e. g(v,5) <0), the structure or
structural element has ‘failed’. The experiment is repeated many times, each time with a

randomly chosen vector V' of v, values. If N trials are conducted, the probability of

failure is approximated by

p, 18000 04

Where n(g(v,5)<0) denotes the number of trials for the structure failure (i.e.
g(v,5)<0). Obviously, the desired accuracy for P, is closely related to the number N
of trials performed.

On the other hand, rather than use numerical approximations to perform the

integration, the first- and second-order reliability methods simplify the probability

density function f, () in Eq. 2-2.

THE FIRST-ORDER RELIABILITY METHOD
In the first-order reliability method (FORM), an approximation of the integral is
obtained by replacing the integration boundary with a first-order approximation surface

in a transformed space of standard normal variates.



The basic random variables V' are transformed into a set of statistically independent,

standard normal variates:
Y=Y(¥). (2-5)

This mapping is denoted the probability transformation. It exists for continuous
random variables and it can be inverted. In terms of the standard normal variates, the

limit state function is denoted
GY)=g(V(¥Y),SV(Y))). (2-6)

Since the probability transformation is a one-to-one mapping, the probability content in
the failure domain is preserved in the standard normal space. Hence, in this space the

failure probability may be expressed by

P= [y, (2-7)

G(y)<0
where ¢(y) denotes the standard normal density of ¥ .

The approximation is carried out at points of the boundary which have minimum
distance to the origin in the standard normal space. These points, known as design
points, have maximal probability densities among all point(s) in the failure domain and,
hence, their neighborhoods make the dominant contributions to the probability integral.
This is also the reason why the surface approximations can be used here. The most time-
consuming part of the FORM analysis is the process of finding the design point(s).
Usually, a constrained optimization algorithm employing the gradient vector of the limit-

state function is used for this purpose (Zhang and Der Kiureghian, 1994).
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In FORM, the limit-state suface in the standard normal space is replaced by its
tangent hyperplane at the point nearest to the origin (see Fig 2-1). The distance from the

origin to the point, denoted £, is known as the reliability index. The first-order estimate

of the failure probability is given by

P= [ $0dy=0(-p) (2-8)

VG(y ) (y-y <0

where VG(y") is the gradient of G(y) computed at the design point y~ and ®() is the

cumulative distribution function (CDF) of the standard normal variate.
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Fig. 2-1 The First-Order Reliability Method

It is possible that the limit-state surface has multiple minimum distance points. In
that case, the surface is approximated by a polyhedron and system reliability techniques
are employed to improve the first-order probability estimate (Liu and Der Kiureghian,

1989).
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THE NORMAL TRANSFORMATION
In general, the transformation from non-normally distributed variables to equivalent
standardized normal variables in Eq. 2-5 is not as simple and straightforward as it
appears to be. However, once it has been done the resulting normal equivalents can be

used directly in probability calculation procedures.

Consider a vector of uniformly distributed random variables, denoted R. Let these
be the intermediaries between the random variables in the original space, represented by
the vector X, and the standardized normal variables, represented by the vector Y .

Provided the necessary data for the joint probability distribution function F (x) and its
conditional distributions E.(xi|x1,---,xl.71) are available, the Rosenblatt Transformation

in n -dimensional space becomes:

O(y)=rn=F(x)

D(y,) =1, = F(x|x) (2-9)

O(y,) =1, =F,(x,

xl’“"xn—l)

where @®() is the standard normal cumulative distribution function for Y and
E(xl.|xl,-~,xl._1) is the conditional cumulative distribution function for the random

variable X, (Melchers, 1987).

Then, the component random variables x; can be obtained from
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X =F ' [®()]
X, = Fz_l [(D(yz)| x,] (2-10)
x, = F,[O(,)] x5 %, ]

Before the above transformations can be incorporated into an iteration algorithm, it

is necessary to determine the transformation of the limit-state function from G(x)=0 to
g(¥)=0. A probability density function defined in the x space is transformed to the y

space
G(x) = g(y)/| 2-11)
where the Jacobian |J | has elements j, =0y, /0x,; The differential may be evaluated by

a, _ 1 aE'(xi|x1="'axi—1)
axj P(y) axj

(2-12)

In practice, the necessary data to allow f, (x) to be described completely may not be

available. If only marginal cumulative probability distribution functions

Fy(),i=1,---,n and the correlation matrix P ={p,} are available, the conditional

distributions required in Eq. 2-9 are not available. As a result, it is now not possible to

apply the Rosenblatt transformation.

Instead, the Nataf transformation may be applied to give a set of independent normal
random variables. Unlike the Rosenblatt transformation, the Nataf transformation is

approximate (Melchers, 1999).
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Consider the marginal transformation from the random variables X = (X, -, X, ) in

x space to the standardized normal random variables Y =(Y,,---,Y,) in y space, given
by

Y, =®7[Fy (X)), i=1--.n (2-13)

where, as before ®() is the standard normal cumulative distribution function. It is

assumed that 'Y =(Y,,---,Y,) is jointly normal and has n-dimensional standard normal

probability density function ¢, (y,P') with zero means, unit standard deviations and

correlation matrix P'={p'; }. The Nataf approximation for the joint probability density

function f, () is then given by
fx =8,(y.,P')-J| (2-14)

where the Jacobian |J | is defined by

|J|: 8(y1,-~,yn) _ fxl(xl)'fxz(xz)"'fxn(xn) (2_15)

(x5 X,) P(y)P(yy)-P(y,)

Thus f() is forced to be a unique n -dimensional joint density function defined by Eq.

2-14. The only matter left for resolution is the definition of the correlation matrix

P'={p';} in Eq. 2-14. It would be expected that this should be related to the correlation

matrix P ={p,} in X space.

For convenience, introduce the normalized random variables Z, = (X, —u, )/ o, .

Then, for any two random variables the correlation between the X, can be stated as
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XX
Py =——E[ZZ] [ [ 220,0)dvdy, (2-16)

From this expression the terms in the correlation matrix P'={p',} can be
determined for each pair of marginal distributions with known P ={p,}. Clearly it will
be an iterative and rather tedious process. To ease the burden, Liu and Der Kiureghian

(1986) have produced empirical, approximate expressions for the ratio

o
Pij

R= (2-17)

Based on the fact that R falls into the range from 0.9 to 1.1 with the exception of
combinations involving the shifted exponential distribution, Der Kiureghian and Liu

(1986) further suggested that for many problems it is sufficient to use P ={p,} directly
as P'={p',}. It will still be able to give satisfactory results because of the fact that the
structural reliability can rarely be determined with high precision in practice.

The above Nataf transformation has several useful features. First, it is applicable to
an arbitrary number of random variables with prescribed marginals and covariances.
Second, the resulting FORM approximations are invariant of the ordering of the basic
variables. Third, the required transformation is computationally much simpler than the
transformation in Eq. 2-10 when the conditional distributions are specified (Liu and Der

Kiureghian, 1989).



16

THE SECOND-ORDER RELIABILITY METHOD
In some cases, if the limit-state surface has significant curvature it may not be
accurate or desirable to approximate the limit-state surface by a linear surface through a
Taylor series expansion. Furthermore, even if each limit-state function is linear in the
original space, a non-linear limit state may result when the reliability problem is

transformed from the original space to the standard normal space.

In the second-order reliability method (SORM), the limit-state surface is replaced by
a second-order surface fitted to the design point (See Fig. 2-2). The SORM attempts to
fit a paraboloid to the actual surface. It includes two sub-categories: the curvature-fitted
paraboloid and the point-fitted paraboloid. The point-fitting method has the important
advantage of being insensitive to the noise on the limit-state surface, which may arise
when the limit-state function is in an algorithmic form (Liu and Der Kiureghian, 1989).
This advantage is of particular interest in the finite element reliability methods, which are

used in the present study.

The details of formulation of the SORM are beyond the scope of this thesis.
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Fig. 2-2 The Second-Order Reliability Method
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CHAPTER THREE
EIGHT-NODE ELEMENT FORMULATION
INTRODUCTION
The finite element method is firmly established as a powerful and popular analysis
tool. It is applied to many different problems of continua and widely used for various
applications in structural mechanics. The element that will be used in the present study is
the eight-node isoparametric 2-D element, which needs to be added to the general-

purpose finite element program FEMCOD.

The term “isoparametric” means “same parameters” and is explained as follows.

Because either displacements or coordinates can be interpolated from nodal values,

1. The displacements [« v] at any point in the element can be defined from nodal

degrees of freedom (d.o.f) {d},i.e., [uv] =[N]{d}.

2. The coordinates [x y] at any point in the element can be defined from nodal

coordinates {c}, i.e., [x y]" =[N]{c}.

An element is isoparametric if [N] and [N] are identical. If [N] is of higher
degree than [N], the element is called subparametric, but if [N] is of lower degree than
[N1], the element is called superparametric (Cook, Malkus and Plesha, 1989).

The isoparametric formulation makes it possible to generate elements that are

nonrectangular and have curved sides. In formulating isoparametric elements, a natural

coordinate system must be used (system &7 in Fig. 3-1). Displacements are expressed in

terms of natural coordinates. However, to compute the strains, the displacements must be
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differentiated with respect to global coordinates x and y. Accordingly, a transformation

matrix must be invoked. In addition, integrations must be done numerically rather than
analytically if elements are nonrectangular. Although closed-form integrations are
possible in some special cases, expressions tend to be lengthy, tedious to work out, and
therefore more subject to errors of algebra and coding than numerical integration (Cook,

Malkus and Plesha, 1989).

Fig. 3-1 Eight-node isoparametric elements and natural coordinates
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8-NODE ISOPARAMETRIC 2-D AXISYMMETRIC ELEMENT
The formulation of axisymmetric 2-D 8-node isoparametric elements is derived first
in this section. It is then modified to include the ability to analyze plane-strain and plane-

stress problems.

Isoparametric coordinates in a plane are shown in Fig. 3-1. For an eight-node
element, axes & and 7 need not be orthogonal, and neither do they need be parallel to
the x axis or the y axis. Sides of the element are at £ ==+1 and at  ==1, each of
which includes three nodes. Two of the side nodes are at £ =0 and two are at 7=0.
Sides of an undeformed element may be straight lines or quadratic curves.

In this isoparametric formulation, the geometric mapping and the displacement

interpolation are defined by

Il
=
I

r N O N, O -+ N, O
= Z (3-1)
z 0 N 0 N, - 0 Ngj|.

and
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(3-2)

Il
=
I

u)] [N, 0 N, 0O - N, 0
= w.
w 0 N 0 N, -+ 0 NJ|.

where N is the shape function matrix and d and ¢ are the displacement vector and the

coordinate vector, respectively. The notation “ ” and ““ ” refer to matrices and vectors,
which will be used in the remainder of this chapter.
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Fig. 3-2 Displacements at any point in the cylindrical coordinates
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For a general 3-D problem in the cylindrical coordinate system as shown in Fig. 3-

2, the strain-displacement relations at an arbitrary point in an element are

ou
& =—
or
u 10v
gy =—+——
r roo
ow
8228—
7
3-3
_lou ov v )
Vro rof or r
o ow
Vr oz or
_ov_ low
Yo: = 5, T 00

where ¢’s and y’s are strain components in the cylindrical coordinate system at any

particular point; u, v and w are respectively the radial, tangential, and axial

displacement components at the same point.

If the geometry, material properties, and loads are axially symmetric, the problem is

mathematically two-dimensional. That is, if the geometry, support conditions, loads R,
and material property matrix E are all independent of @, and if the material either is

isotropic or has @ as a principal material direction, the resulting displacements and
stresses are independent of &, the circumferential displacement v is zero, and material

points have only u (i.e. radial) and w (i.e. axial) displacement components

ou 0- ow

o, Yy, ~0 34
00 00 y Sl

As a result, the strain-displacement relations are simplified to
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_Ou _
r 87’ or
u
£y =—
r
e =y
z 82 Sz (3-5)
7/1‘5 = O
ou ow
= — t—= u’z+wi‘r
oz or
792 =

where a comma denotes partial differentiation.

In a matrix format, if the zero items are omitted, Eq. 3-5 can be expressed as

g, u,, olor 0
89 u/r 1/7‘ O u
£= = = (3-6a)
Sz Waz 0 8/82 w
Yz u,z+W,r a/az 8/81"
or eg=0-N-d=B-d (3-6b)

Since both # and w are functions of & and 7, the partial derivatives of u and w
with respect to » and z in Eq. 3-6 are impossible to compute directly. Thus, Eq. 3-6

needs to be carried out by using the Chain Rule.

For the sake of clarity in the derivation, the expression in Eq. 3-6 is separated into

three steps

u,,
£, 1 000 O

u,.
&y 0 0 0 0 1/r

= w, (3-7)

£, 0001 O "

w,.,
V.. 0110 0O

F !
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G
0 N, Ny
0 N, 0 - N,
Nun: 0 Ny, 0
Ny,, 0 N, 0
0 N, 0 N,

H

where the shape functions N,, i =1, 8 are

Nl

N2

N,

Ny

— (=8 A== N, =N,
— L+ 8= =N, =N,
Ny =+ 4m) = N =N,
— =8+ =N, ~ N,
—(1=§1-n)

N, =%(1+§)(1—772)

N,

Ny

1

1

=5(1—4§2)(1+77)

=-(1-H(1-1")

2
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(3-8)

(3-9)

(3-10)

Then, the only remaining unknown is [I'], which can easily be derived from Eq. 3-8
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S, 1,
= 3-11
] L,,Z n’j G-11)

Unfortunately, the partial derivatives of & and 7 with respect to » and z are not
directly available from the known information. Therefore, the inverse of [I'] must be

written first
e 2, _
[J]=[f Z‘f}[r]‘ (3-12)
n

where [J] is called the Jacobian matrix, which is readily available. The matrix [I'] is

then generated by inverting [J]

- 1 Jzz _le
[C1=[J]" |J|{ J } (3-13)

where |J | is the determinant of the Jacobian matrix.

Obviously, the multiplication of the three equations, Eq. 3-7, Eq. 3-8 and Eq. 3-9,

again gives the relation between nodal displacements and strains at the point of interest

d=B-d (3-14)

=L

I
=
IS

where B equals the multiplication of the three matrices £, G and H .
The element stiffness matrix is formed by

(3-15)

Ilbu

£§=

where E is the material stiffness matrix and dV equals rdfdrdz in cylindrical

coordinates. Thus, Eq. 3-15 can be expanded to
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.[f B"-E-Brdf@drdz
I

|

| —_—

—

L8

(s~
N

([s5

-Brd6|J|dédn (3-16)

Il
N
B

-
—
[i>~)

7,
[t

‘Br |J|d§d77

In axisymmetric problems, both the load vector R and the structure stiffness matrix

K have “27 ” as a multiplier in the structural equation

.D=R (3-17)

(>

As a result, this superfluous multiplier can be avoided by letting integrals for &
integrate only from zero to one radian. With this approach, all integrals are assumed to
pertain to one radian (i.e. equivalent loads give forces per radian). However, extra
attention must be paid to the axial forces, which need to be modified by dividing by 27 .

Thus, Eq. 3-16 becomes

>

:flfﬁr‘é'ﬁﬂﬂde‘dﬂ (3-18)

which will be integrated numerically by using 3x3 Gauss quadrature (i.e. “full

integration” for 8-node elements).

SURFACE TRACTIONS

In the structural equation Eq. 3-17, the structure stiffness matrix K has been
formulated in Eq. 3-18 and D is the unknown nodal displacement vector we obtained
through the solution. In the following, the equivalent nodal load vector R is derived for

the case of surface tractions.
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The equivalent nodal load vector R may include several components of nodal

forces, initial strains, initial stresses, body forces and surface tractions. The ability to
handle nodal forces is part of the formulation of finite element method itself. In the
present work, only the surface tractions were considered as an extra loading format in

formulating the current 8-node isoparametric elements. In this thesis, the vector “¢_ ” is

used to refer to the equivalent nodal load vector solely from surface tractions.
"t

'®

Fig. 3-3 Gauss points for edge 3 in 8-node isoparametric elements

Generally, g, is expressed as

q, =[N, ®ds (3-19)
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where @ is the surface traction, N, is the shape function along the loading edge, which

is different for each edge, and ds is an infinitesimal length along the same edge

ds = ldx> +dy’ . (3-20)

The equivalent load vector is formed for the surface tractions on edge 3 as an

example (see Fig. 3-3). The shape function on this edge is evaluated at 77 =1

=

N

[0000N, O N, 0O 0000N, 0 00
0000 O N,, O N, 0000 0O N, 00

3

where the subscript 3 means the shape functions evaluated at edge 3.

In practice, second-order Gauss quadrature (i.e. two Gauss points, G1 and G2 in Fig.
3-3, will be selected on edge 3 to integrate Eq. 3-19 numerically) is chosen to calculate

q,. This strategy automatically zeros N to N, . Furthermore, since 7 is constant and

equals 1 on edge 3, dx and dy in Eq. 3-20 are only functions of £. The relations are

available from the Chain Rule,

dx
dx =d—§d§ =J,d&

d
dy = éde‘ = J,d&

(3-22)

Generally speaking, surface tractions for a specific problem might be given in two
categories: globally (i.e. pressure in the global directions) or locally (i.e. normal pressure
o and shear pressure 7 on a surface). If a surface traction is given in the global

coordinates, the equivalent nodal load vector can easily be defined by
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X}rw/an +J, dE (3-23)

Y

@435{2

where @ and @ are x and y components of the surface traction.

On the other hand, a transformation needs to be used for local pressures, as follows:

ﬁszsT{zx}ds

y

_IN T{z‘dscosﬁ—adssinﬂ}

' (3-24)
odscos f+tdssinf

_ IN rlrdx—ody
" — |odx+tdy
where o and 7 are the local normal and shear pressures respectively, and f is the

orientation angle of the infinitesimal length. Considering again dx =J,,d§ and

dy =J,,d¢é in Eq. 3-22, Eq. 3-24 can be simplified to

1 tJ,, —of
= NS 2 lrd 3-25
4 J‘*1=s {O‘J“ +7J, d (3-25)

Other edges are in a form similar to the above, i.e., at the edge 2,

1 D
g, = L N, T{CD }m/J212+J222d77 (3-26)

y

or

g, —al
ﬁzlef{T 21 G”}m; (3-27)
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STRESS CALCULATION
For isoparametric elements, it often happens that stresses (especially shear stresses)
are most accurate at Gauss points of a quadrature rule one order less than that required

for “full integration” (i.e. a quadrature rule sufficient to provide the exact integrals of all

terms in the element stiffness matrix if the element is undistorted, or in other words,

J | is
constant) of the element stiffness matrix. Thus, the 2 x2 Gauss quadrature rule is used

for the stress calculation of the current 8-node elements.

A
n
4 T 3
¢ @ n=1
D C
S
[ —@ >
8 r 6 ¢
A B
[ @ L n=-1
1 5 2
E=-1 ¢=1

Fig. 3-4 Stress calculation in 8-node isoparametric elements
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In Fig. 3-4, points A, B, C and D at &, = J_r% are selected to compute the

stresses for the element. Then, the results can be extrapolated to the nodal points if
needed in the output. To perform the extrapolation about the points 4 — D, 4-node shape

functions in terms of » and s are applied to them as if they were nodal points. That is, at

any point, P,
o,=N,0,+Nyo,+N.o-+N,o, (3-28)
where
1
N,=—1-r1-s)
4
1

Ny,=—1+r)(1-s)
‘1‘ (3-29)
Ne=2(+r)(1+s)

N, =%(l—r)(l+s)

For example, atnode 3, E=n=1, r=s= V3

o, =i(l—ﬁ)(1—ﬁ)@ +%(l+ﬁ)a—ﬁ)g3

+%(1+«5)<1+ﬁ>gc +%(1—ﬁ><1+ﬁ)g0
=0.1340 ,-0.50, +1.8660 - —0.50
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MODIFICATION FOR PLANE-STRAIN AND PLANE-STRESS APPLICATION

Only two minor changes need to be made to make the existing axisymmetric
formulation useable for plane-strain and plane-stress problems.

Firstly, the E matrices are different for each case. For isotropic materials,

axisymmetric, plane-strain, and plane-stress problems have different stress-strain

relations as expressed in Eq. 3-30, 3-31 and 3-32, respectively

O O-r gr
po B vt vl Tol_ gl (3-30)
= (1+wv)a-2»)| v v l-v 0 o. Zle.
0 0 0 1-2v
L 2 | 7’-zr j/zr
I-v v 0 o, £,
EZL v l-v 0 o,r=E5¢, (3-31)
- (I+nd-2v) 1-2v -
0 0 2 T, -
e 1 v 0 o, g,
E= v 1 0 o, r=Ej¢, (3-32)
- 1—V2 1—-v Y =| 7
0 0 5 Ty Vs

In the present work, wood composites are highly oriented and need to be modelled as
orthotropic materials, for which the above relations become more complex. Keeping the

strains and the stresses in the same order as above, the £ matrices can be expressed in a

general form
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Qll QIZ Q13 0
£ — SZI 222 gB g (3_33)

0 0 0 O,

where the element Qs in the stiffness matrix for an orthotropic material in terms of the

engineering constants are derived respectively as Eq. 3-34, 3-35 and 3-36 for the

axisymmetric, plane-strain and plane-stress problems:

_l=vuvy,
0, =52
V,, +V.,V V., +V..V
0, =0, =22V Vi TViaVs
E,EA EEA
Vi, + V.V Vi, + V.,V
0,=0, =2V Vi T VeVs
E,EA EEA
1-v3vy
=—2=0 3 , 3-34
Oy EEA (3-34)
_ _ Vo tViVs Ve tVaVis
0y =0, EEA EEA
_1=vpvy,
O EEA
Q44 = G12
_l=vuvy,
0, =5
0,=0,=0
0 Vs tVaVn _ Vis T ViV
0, =0; EEA EEA
sz =0 5 (3-35)
Q23 = Q32 =0
0, = 1-v,vy,

EE,A
Q44 = Glz
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and
E
Q11 = 1 :
— ViV
le = Q21 =0
0,.=0, = viE, B
13 31
I-v,vy  1=v,yy,
Oy = R (3-36)
Q23 = Q32 =0
E
Q33 = 2
1- ViaVa
Q44 = Glz
where A = L= VipVoy = VisVay = V3Vis = 2V VsV )

E\ E, E;

Secondly, in the formation of the stiffness matrix and the load vector, “7” is no
longer a variable of the radius from the revolution axis to the specified integration point
as used in axisymmetric problems. It is taken as the thickness for the plane stress and a

unit for the plane strain.

In modifying FEMCOD, three options were given according to these three

situations in order to make the program general for any 2-D problems.
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CHAPTER FOUR
COMPUTER IMPLEMENTATION
INTRODUCTION

A two-scale approach was used to investigate the behavior of particulate-reinforced
wood composites in which the reinforcement volume fraction and the reinforcement
orientation vary randomly. Conventional unit cell models were carried out in ABAQUS
to generate the mesoscale properties. These properties were then applied to the
CALREL-FEMCOD program as basic variables. The deviations in the basic variables
were introduced to represent the orientation of the reinforcement, the reinforcement
clustering, and the variations of the local volume ratio between the plastic matrix and the
reinforcement particles. To be specific, the deviation of the angle between the principal
axes of wood particles and the global directions of each element was used to represent
the random orientation of the particles, and the deviation in the volume fraction of each

element was used to represent the reinforcement clustering.

DETERMINATION OF MESOSCALE PROPERTIES
2-D models were designed to calculate the longitudinal and transversal properties
separately. An axisymmetric unit cell model, representing a periodic array of cylinders
each containing a single central cylindrical particle, was used to determine the
longitudinal mesoscale properties.  Similarly, the transversal characteristics were
determined by using a plane-strain model (See Fig. 4-1). In both models, the physical

fibers of wood were assumed to be oriented in the longitudinal direction.
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(a) Axisymmetric model in (b) Plane-strain model in
longitudinal direction transversal direction

Fig. 4-1 Mesoscale models used to generate composite properties

The finite element models were meshed with isoparametric 8-node elements in
ABAQUS/Standard. The properties of wood particles and the plastic matrix were

assumed to be determinant in these two models. The plastic matrix material was assumed
to be isotropic and elastic, with an elastic modulus of 2 x10° Psi and a Poisson’s ratio of
0.4. The wood reinforcement was assumed to be highly orthotropic and elastic, with
elastic moduli of E,=1.6x10°Psi and E,=1.6x10’Psi, shear moduli of

G, =G, =8x10"Psi and G,, =1.6x10*Psi, and all Poisson’s ratios of 0.4. The

volume fraction was chosen to be 30%, 50%, or 70%, which was used to represent the

lower bound, average, or upper bound of values commonly encountered in practice,

respectively. An aspect ratio (i.e. b in Fig. 4-2) of 10:1 was used.
a
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| Plastic Matrix

Wood
Reinforcement

Fig. 4-2 Representation of one corner of a unit cell

To build up the ABAQUS models, the geometry must be first defined according to a
prescribed volume ratio. In the 3-D representation of unit cells as shown in Fig. 4-2, the
particles are transversely aligned (i.e. the arrangement of particles is identical in the
transversal direction) and the volume element represents one-eighth of a single
particulate-reinforced unit cell. Thus, the volume of the reinforcement at this corner and

the total volume of this portion can be easily computed as

=—xr’l (4-1)

particle 4

and

=a’b (4-2)

composite

where r and [ are the radius and length respectively of the cylindrical representation of

the wood particle; a is the side length of the square cross section; and & is the length of
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the cuboid (See Fig. 4-2). The same aspect ratio is then assumed for the particle as for

the cell itself

(4-3)

!
r

b
-

With these assumptions, enough information has been provided to set up a model.
As an example, with an average volume fraction of 50% wood particle reinforcement, the

relations between these geometric parameters can be easily derived:

VParticle — 50 %

Composite
2
B T
4ab
3
= 2L _50% (4-4)
a
= r=0.86a
[ =0.86b
where Vy,,.;. and V... refer to the volume of the particle only and of the whole

composite, respectively. The relations were then used to generate the 2-D model
geometry. As a result, different models need to be generated for longitudinal and
transverse cases according to each single volume fraction. In the current study, a look-up
table was created. All material properties were computed for volume ratios of 30%, 40%,
50%, 60%, and 70%. For other volume ratios between the upper and lower bounds (i.e.
30% and 70%), the properties were calculated directly from linear interpolations of two

adjacent cases.
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(a) Axisymmetric model in
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Fig. 4-3 Loading conditions in both longitudinal and transversal models

These models were loaded by applying a uniform displacement to the faces, as
shown in Fig. 4-3. The boundary conditions of the other faces were specified by the
symmetry requirements. The principal strain along the loading direction in each model

was computed from the unit displacement of the loaded face
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_ Zuniform disp.

8loading - b (4-5)
__ T uniform disp.

gloading - a (4-6)

where &,,,,,, refers to the Engineering Strain in the loading direction, and u and

uniform disp.
are the prescribed displacements in the longitudinal and transversal models,

Vuniﬁ)rm disp.

respectively.

Other strains and all stresses were taken to be the averaged values at either Gauss

points or nodal points of each element

&

% L £dA (4-7)
o= % L o dA (4-8)

where ¢ and o are values for one particular component of strains and stresses,
respectively. With the above data available, the general moduli of elasticity and

Poisson’s ratios of the wood composite can be easily computed.

MACROSCALE PROPERTY DETERMINATION
The macroscale analyses were performed using the Fortran program, denoted as
CALREL-FEMCOD, which was developed by combining a reliability code, CALREL,
and a finite element code, FEMCOD. The combination was done in a manner by which

the finite element and reliability parts of the code were, to the extent possible, kept
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independent of one another (See Fig. 4-4). This is very important from the point of view
that it allows a researcher in either field to modify the program to implement new

research results or to test new methods without knowing the other field.

CALREL . Interface | FEMCQOD
| |
| |
| |
| |
: :
Reliability | | Finite
input : : ellement
| | input
| |
Program |1~ | Reliability | User ! egmz’;t
control V| analysis [N V|subroutines [N :
| | analysis
| |
oA P
| |
| |
Reliability : User : El_ement
library : defined : library
| routines |
FORM : : TRUSS
SORM | UGFUN | TRIANGLE
DIRS : UDGX : 8-NODE
MONT | ubD | :
SENS : !
BOUN I |
PNET | | !
: | |
| |
| |
| |

Fig. 4-4 The structure of CALREL-FEMCOD

CALREL (CAL-Reliability) is a general-purpose structural reliability program
developed by Liu, Lin, and Der Kiureghian (1989). An essential component of this
program is the specification of the limit-state functions that define the failure criteria and
their gradients with respect to the basic variables. It was designed to compute the

probability integrals in the form of
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py = fx(x)dx (4-1)

where X is a vector of random variables with joint probability density function fy (x)

and F' is the failure domain defined by
F={g(x)<0} (4-2)

where g(x) is a limit-state function and g(x) <0 denotes a failure state. In addition to

the failure probability, CALREL also computes the sensitivity estimate, which gives the

information about the influence from the change of each basic variable.

In CALREL, these specifications, which are problem-dependent, are provided by
user-defined subroutines. The limit-state functions are in terms of load effects computed
through a mechanical transformation. Usually, the effects are implicit functions of the
basic variables. As a result, a finite element code needs to be included to perform this

transformation.

CALREL has a large library of probability distributions that can be used to define
fx(x) for independent as well as dependent random variables. It also incorporates four

techniques for computing the above quantities according to its users’ manual:

(1) First-order reliability method (FORM), where the limit-state surfaces are replaced by

tangent hyperplanes at design points in a transformed standard normal space;

(2) Second-order reliability method (SORM), where the limit-state surfaces are replaced

by hyperparaboloids fitted at the design points in the standard normal space;

(3) Directional simulation with exact or approximate surfaces; and
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(4) Monte Carlo simulation.

Three problem-dependent and, therefore, user-defined subroutines are necessary for
running CALREL. The subroutine UGFUN defines the limit-state functions. In addition,
the user may define the gradients of the limit-state functions through the subroutine
UDGX. However, if desired, CALREL will automatically compute the gradients by the
finite difference method and the subroutine UDGX can be left blank. The third
subroutine, UDD, is used to define the probability distributions that are not available in
the CALREL distribution library. This routine can also be a dummy if no user-provided

distributions are necessary.

CALREL executes reliability analyses according to a sequence of macro commands
provided in an input file. The following is a list of macro commands currently available

in CALREL. Only the first four characters are needed to identify each macro command:

CALRel defines problem size;

RESTart restarts a previous run;

DATA reads input data;

END ends input data;

FORM performs FORM analysis;

BOUNd computes first-order bounds for series systems;
PNET computes PNET approximation for series systems;

SENSitivity computes sensitivities of first-order probabilities;
SORM performs SORM analysis;
DIRS performs directional simulation;

MONT performs Monte Carlo simulation;
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EXIT terminates execution.

For a full description of the above commands and the input data, which are provided
between macro commands DATA and END, please refer to CALREL USER MANUAL

(Liu, Lin and Der Kiureghian, 1989).

In finite element reliability analyses, the limit-state functions in UGFUN are
expressed in terms of load effects. The dependence of the load effects on the basic
variables is provided through a finite element program. The finite element code that has
been selected for this purpose is FEMCOD, developed by Plesha, Cook and Malkus

(1989).

FEMCOD is a short but efficient finite element “program skeleton”. It can be
modified to implement various kinds of new elements without changing the storage

strategy and solution procedure.

To provide the function proposed in the present work, three major modifications

were made in FEMCOD:

(1) An isoparametric eight-node 2-D element was added to its element library;
(2) FEMCOD was converted from an independent program into a subroutine; and
(3) The input of some data, which was used as basic variables, was directed to the

CALREL program instead of its own input file.
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Fig. 4-5 Flowcharts for modified FEMCOD
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Flowcharts for the modified version of FEMCOD are shown in Fig. 4-5. The

detailed modifications in each subroutine are also given below:

(1) The following subroutines were added to FEMCOD:

axistf: computes the global stiffness matrix;

findn: computes the shape functions at integration points;

findb: computes the B matrix at integration points;

findk: computes the element stiffness matrix;

axislv: computes the element equivalent surface load vector;

etrans: transforms the material matrix to the global directions;

axistr: computes nodal stresses from the known nodal displacements,

(2) The following subroutines were modified to adapt new functions:

femcod: works as a subroutine and allocates additional space in storage
for surface loads;

ematrix: computes the material matrix for the new 2-D element;

input: includes the input of the surface tractions and the input of basic

variables from CALREL, and

(3) The following subroutines have not been changed in any means:

adstif, modify, trfact, mcheck, wi, wr, colht and locsky.

However, minor modifications are not listed above. For a detailed discription of input
and the original FEMCOD, please refer to the PROGRAM DESCRIPTION AND USER

GUIDE by Plesha, Cook and Malkus (1988).
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Since the present object files (i.e. .obj files) for CALREL are 16-bit, they cannot be
linked in a 32-bit compiler in Windows 95/98/NT with 32-bit libraries. As a result, the
CALREL-FEMCOD program was compiled in MS-Fortran 5.1 and needs to run in MS-
DOS mode. In addition, to fit into the memory in MS-DOS mode, the size of original

global arrays defined in CALREL and FEMCOD was reduced.



48

CHAPTER FIVE
NUMERICAL APPLICATION
ABAQUS (MESOSCALE) MODEL
Conventional unit cell models were developed in ABAQUS to generate the
mesoscale properties. These properties were then applied to the CALREL-FEMCOD

program as basic variables.

Two ABAQUS models described in Chapter Four are shown in Fig. 5-1 and Fig. 5-2.
The elastic moduli and Poisson’s ratios were computed from the stress and strain output

at integration points.

ABAQUS

DISFLACEMENT MAGHIPICATION PACTOR = L. LLIE+D3 CRIGINAL MESH DISPLACED MESH
FESTAFT FILE = long STEF | INCREMENT L

Z
TIME COMPLETED IN THIS STEF 2. 220B-LE TOTAL ACCUMILATED TIME . DDDE+DD

ABAQUE VERSION: 5 @-L TATE: L7-FEE-2000 TIME: DO-50:52

Fig. 5-1 Deformed and original shapes in the longitudinal model
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Fig. 5-2 Deformed and original shapes in the transversal model

All strains and stresses except &, and ¢&,, were taken as the averaged values at
Gauss points in every finite element. The material properties of the wood composite
were then easily computed, as tabulated below. v,, and G,, are fairly constant for all
volume ratios. E, increases with the increase of wood reinforcement, as could be
expected. E, and v,; increase first, reach their peak values at 40% reinforcement ratio,
and then drop with respect to the increasing volume ratio. At low ratios of
reinforcement, increasing wood particles stiffens the composite by Poisson’s effects from

the elastic modulus in the 1-direction. But, with higher reinforcement ratios, the elastic

modulus in the 2-direction of wood particles provides more effect on the composite

stiffness. Since E, of wood particles (i.e., 1.6 x10’ psi) is assumed to be smaller than
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E, of the plastic matrix (i.e., 2.0x10° psi ), E, of the composite decreases slightly with

the increase of the volume ratio.

Table 5-1 Material properties for different volume ratios

Volume ratio | £, (x10° psi) | E, (x10° psi) Vis Vo G,,(x10° psi)
30% 4.75 1.63 0.399 0.530 0.740
40% 5.01 1.96 0.397 0.531 0.740
50% 6.56 1.91 0.397 0.513 0.742
60% 7.47 1.89 0.399 0.509 0.746
70% 8.10 1.85 0.402 0.494 0.762

To verify the accuracy of these two models, all parameters for the 50%
reinforcement ratio computed above were checked against the theoretical results. Only

the procedures of comparison of E, and E, are shown below. For other theoretical

solutions, one may refer to any composite book.

According to the basic mechanics of composite materials, the elastic moduli in the 1-

and 2-directions (see Fig. 5-3) could be determined by the rules of mixture, given by

E =EJV,+E)V, (5-1)
EE
= (5-2)
EV,+EJV,

where E, and E, are the elastic moduli in the 1- or 2-direction for the particle and
matrix, respectively, and V', and V,, refer to the volume fractions of the particle and the

matrix over the total volume of the composite. In the actual volume element as shown in
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Fig. 5-4, E, and E, need to be computed in a stepwise fashion as shown, and the results

were 6.55x10° psi and 1.79 x 10’ psi , respectively. Based upon the fact that the rules of
mixtures actually neglect the Poisson’s effects and the stiffness in the other directions,
the results generated from ABAQUS are of higher accuracy. Similar to these two
moduli, values of other parameters are also very close to those obtained theoretically with
improvement due to the relaxation of assumptions. The actual strain and stress

distributions in ABAQUS models are shown in Fig. 5-5 and 5-6.
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Fig. 5-6 Strain and stress in the transverse model

MACROSCALE ANALYSIS

The CALREL-FEMCOD program was used to study two simple structures. The
structures were meshed with 8-node isoparametric elements as plane-stress problems.
Several typical finite elements made up an element group, the elements of which
possessed the same material properties. However, the properties varied between each
element group. This approach represented the characteristics of randomly reinforced
composite structures. Each element group had random values for the orientation angle,
affecting the stiffness matrix transformation, and the reinforcement ratio, which decided
basic material constants from the look-up table generated from mesoscale models (see

Table 5-1).

Failure estimates were made for each structure according to a specific failure
criterion. Due to the storage limitation within the current version of CALREL-

FEMCOD, only fairly coarse finite element meshes and random field meshes were used
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to study these two structures. In general, much finer meshes need to be used to obtain a
converged result. Thus, the results of the structural reliability analyses shown in this
chapter should only be used to show the overall trend of the effects from different factors.
In the current study, the effects of the probability distribution of each parameter on
structure reliability were studied. Sensitivity analyses were also performed for each basic

variable.

NUMERICAL EXAMPLE 1

A pure tension test was performed for a 4 inch high, 10 inch wide thin plate (see Fig.
5-7). The plate was meshed with 40 elements as shown in Fig. 5-8. Since it is not
efficient or computationally stable to use the same mesh for the random field
discretizations as used for finite element analyses, Der Kiureghian and Ke (1988)
suggested using separate meshes for them. In this study, a separate mesh for random
fields of properties was then taken as a group of four finite elements (see Fig. 5-8). The
bold border describes a random field mesh. As a result, 10 groups were defined and
arranged as shown in Fig. 5-8. Each group had two random basic variables, namely the
orientation angle and the volume ratio. Totally, 20 basic variables were used for the
whole structure. The failure criterion used in this example was the maximum stress
theory with an assigned value of 12000 psi parallel to the reinforcement direction. For
simplification, the strength contribution from the transversal direction was ignored. The
stress limits were adjusted to the global direction according to different mean orientation

angles.
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indices, f) of the tension test were calculated according to different standard deviations

(S. D.) of these two basic variables as shown in Table 5-2a and 5-2b:

Table 5-2a Failure probability for different standard deviations

S.D.of V.R. 10% 20% 30%
S.D.of O. A.
2.5° 9.6% 9.7% 9.9%
5° 25.7% 25.7% 25.8%
10° 37.2% 37.2% 37.2%

Note: V.R. means the volume ratio and O.A. means orientation angle.

Table 5-2b Performance indices for different standard deviations

S.D.of V.R. 10% 20% 30%
S.D.of O. A.

2.5° 1.305 1.297 1.286

5° 0.653 0.652 0.650

10° 0.327 0.327 0.326

Note: V.R. means the volume ratio and O.A. means orientation angle.

It is apparent that the structure has increased likelihood of failure with increased
variation in properties (i.e. the structure is more random). Since the load was a uniform
tensile pressure and the failure criterion was a stress limit in this example, the orientation
angle has much more effect on the structure than does the volume ratio. The latter only
affected the stiffness of the structure and, thus, resulted in different displacements. Based
on this fact, further investigation was conducted on the effects on failure from

distribution parameters of the orientation angle in this example. The volume ratio was
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kept the same in a normal distribution of 0.5 mean and 0.1 standard deviation. The
results, with respect to different means and standard deviations of the reinforcement
angle, are shown in Table 5-3ab and Fig. 5-9ab. With a larger reinforcement angle (i.e.
the reinforcement is further away from the tension direction), the structure was weaker
and more liable to fail. Also, the failure probability was higher with the increase of

variations in the reinforcement angles (i.e. larger standard deviations).

Table 5-3a Failure probability for different parameters of orientation angles

S.D. 2.5° 5° 10° 15° 20°
Mean
0° 9.6% 25.7% 37.2% 41.4% 43.5%
7.5° 19.0% 29.2% 38.4% 42.2% 44.1%
15° 40.1% 44.4% 47.1% 48.1% 48.6%

Note: All angles here are in degrees.

Table 5-3b Performance indices for different parameters of orientation angles

S.D. 2.5° 5° 10° 15° 20°
Mean
0° 1.305 0.653 0.327 0.218 0.163
7.5° 0.879 0.549 0.294 0.198 0.148
15° 0.251 0.141 0.072 0.048 0.036

Note: All angles here are in degrees.
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Failure probability for different parameters of orientation angles
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Fig. 5-9b Performance indices for different parameters of orientation angles
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Sensitivity analyses were also conducted on basic variables in each situation. The
results turned out to be similar to each other. Thus, only the sensitivity estimates for an
arbitrary case are shown in Table 5-4. The selected case is one with a volume ratio of
50% mean and 10% standard deviation and an orientation angle of 15° mean and 15°
standard deviation. Each number describes the effect of changing a specific parameter on
the reliability of the structure. It could be regarded as a partial differential of the failure
function over each parameter. The bigger the number, the bigger the influence. From
this table, the structure was shown to be most sensitive to variation of the properties at
locations furthest away from the loading. This result is fairly reasonable because when
the location is very close to the loading side, the principal stress tends to be equal to the

uniform pressure no matter how the properties vary.
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Table 5-4 Sensitivity analysis for basic variables

Basic variable Description Mean Standard deviation
x1 v. 1. for group 1 -1.06E-03 1.35E-08
x2 0. a. for group 1 3.28E-03 3.40E-07
x3 v. 1. for group 2 5.85E-04 4.23E-09
x4 0. a. for group 2 -2.08E-03 1.36E-07
x5 v. 1. for group 3 -1.89E-02 4.32E-06
x6 0. a. for group 3 4.93E-03 7.56E-07
x7 v. 1. for group 4 7.34E-03 6.22E-07
x8 0. a. for group 4 1.12E-02 3.98E-06
x9 v. 1. for group 5 -8.23E-02 8.18E-05
x10 0. a. for group 5 -4.14E-02 5.48E-05
x11 v. 1. for group 6 3.12E-02 1.18E-05
x12 0. a. for group 6 1.05E-01 3.50E-04
x13 v. 1. for group 7 -1.34E-01 2.16E-04
x14 0. a. for group 7 -3.89E-01 4.78E-03
x15 v. 1. for group 8 2.73E-02 8.68E-06
x16 0. a. for group 8 5.60E-01 9.97E-03
x17 v. 1. for group 9 2.33E-01 6.53E-04
x18 0. a. for group 9 -1.08E+00 3.69E-02
x19 v. 1. for group 10 -1.96E-01 4.77E-04
x20 0. a. for group 10 8.11E-01 2.09E-02
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NUMERICAL EXAMPLE 2
A 20x20 in. square thin plate was loaded by a uniform pressure, 8 psi, on one side
as shown in Fig. 5-10. The plate was fixed at two corners and the structure was meshed
with four 8-node elements. In this study, even though the material properties were still
random, they were assumed to be the same for all elements. The reliability of the

structure was checked against several displacement thresholds. From another point of

view, the failure criterion in this example could be regarded as a stiffness limit (i.e., % ).

Uniform

Pressure
- @ L ® & L J
10 12 9 21 19

—
—> 913 11 20¢

—>
- @ & L 4 L 2 L J
4 7 3 18 15

—
—> 68 6e 17 ¢

—
1 5 2 16 14

L

s

Fig. 5-10 A square plate under a uniform side pressure
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Emphasis was directed to the effects from different volume ratios in this example.
The orientation angle was then assumed to be a normal distribution of 90° mean with a 5°
standard deviation in all cases. The structure was also assumed to be reinforced with
45%, 50%, and 55% wood particles plus a + 5% fluctuation. The displacement limit was
evaluated at node 9, which was the middle node at the top side of the plate as shown in

Fig. 5-10.

Table 5-5a Failure probability for different displacement thresholds

isp | 0.095 | 0.0955 | 0.096 | 0.0965 | 0.097 | 0.0975 | 0.098 | 0.0985
V.R.

45% 99.0% | 98.0% | 96.3% | 94.0% | 89.9% | 84.8% | 78.5% | 72.2%

50% 95.5% | 91.9% | 86.6% | 78.9% | 67.3% | 56.6% | 45.3% | 34.5%

55% 84.1% | 76.1% | 63.8% | 49.8% | 359% | 23.1% | 13.5% | 8.49%

Note: Displacements are all in inches.

Table 5-5b Performance indices for different displacement thresholds

isp | 0.095 | 0.0955 | 0.096 | 0.0965 | 0.097 | 0.0975 | 0.098 | 0.0985
V.R.

45% -2.315 | -2.054 | -1.792 | -1.552 | -1.275 | -1.026 | -0.791 | -0.590

50% -1.691 | -1.401 | -1.106 | -0.804 | -0.447 | -0.165 | 0.118 0.400

55% -0.999 | -0.710 | -0.353 | 0.004 0.361 0.734 1.102 1.373

Note: Displacements are all in inches.
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Fig. 5-11 Failure probability for different displacement thresholds
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As expected, the structure was less liable to exceed the displacement limit and the
overall performance was better with an increase in the displacement threshold and
reinforcement fraction, as shown in Table 5-5ab and Fig. 5-11ab. Also, with a relatively
large displacement limit, the reliability of the structure was considerably more sensitive
to the reinforcement ratio. For instance, at the threshold of 0.0985 inch, the failure
probability dropped from 72.2% to 8.49%:; but it only dropped from 99.0% to 84.1% for

0.095 inch limit.
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CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS
Probabilistic finite element methods have been successfully introduced in the study
and analysis of wood composites. Two-scale models were used to keep the computation
effort for composite structures in a manageable range while also representing the

complex microstructure of particulate-reinforced composites.

A measure of the reliability of the structure was obtained for a specific failure
criterion, which gave a better estimate with regard to how the structure could behave and
how efficient the structure is, in comparison with deterministic analysis. Structures
designed for different purposes usually demand different safety coefficients. In practice,
a structure can only be designed to ensure that a structure will not fail at an acceptable
level of probability. There are various sources of uncertainty in structural design. In this
thesis, all study was directed to the uncertainty of material properties. From the aspect of
probability methods, the random properties were represented by using the reinforcement
ratio and the orientation angle as two basic variables for each element group. The size of

the element group could be decided according to the level of randomness.

Besides safety, economy is also a major criterion for a practical design. To improve
the behavior of a structure without causing a significant increase in cost, revisions need
to be done in a very efficient way. Direction for this could be seen from the results of
probability analyses. Sensitivity estimates indicate the relative influence of different

parameters, which could direct attention toward the most important design parameters.

The models used to derive mesoscale properties and to study macroscale structures

were developed using different software and separated into two independent parts. This
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approach provided the advantage of being able to change one part without affecting the
other. For a specific wood composite, a material-constant table can be generated for use
in analyzing all structures made of it. For future work, a more realistic mesoscale model
could be designed to formulate a better material law. In the mean time, existing
macroscale models may be used to make runs according to the new properties in the form

of the look-up table.

From the first numerical examples studied, the influence of the orientation angle was
shown to be larger than that from the volume ratio in pure tension if the reinforcement is
along the tension direction. This means that if the particles are well aligned in extruded
wood composites, the quality of these composites can be improved without changing
components or their ratios. Also, of more importance are the material properties at the
locations away from loading, which should be incorporated in manufacture to improve
the performance of tension members. In both examples, with higher randomness, the
structures had more tendency towards failure. As a result, reducing this factor is also a

practical way to raise the structural safety.

There are several shortcomings in the current study. First of all, analyses were based
on elastic behavior of the material. Secondly, the wood particle and plastic matrix were
assumed to deform together in the models. In practice, the gap between them could be as
big as one forth of the radius of the wood particle. This interaction could be modelled as
a contact problem with various initial gaps and friction coefficients. The models would
then behave nonlinearly and differently in tension and compression. As a result, the
material properties of each element would be problem-dependent and orientation-

dependent. For instance, in bending problems, the tension side of the model behaves
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differently from the compression side, which is similar to the behavior of cracked
reinforced-concrete sections. Iterations are needed to determine the neutral surface,
which does not undergo any deformation. Considering the random reinforcement,
orientation, and orthotropic characteristics of the wood composite, the situation is even
more complicated. A nonlinear ABAQUS model was developed to show this influence
on basic material properties. The longitudinal model was set up by assuming no initial
gap and no friction. The stress-strain relationship in the principal direction is shown in
Fig. 6-1. It behaved almost linearly on both the compression and tension sides, though
the elastic modulus in compression was approximately three times the one in tension. If

they are compared with the results from the ABAQUS models used in Chapter 4, E, in
compression is almost the same, but £, in tension is much smaller. It could make the

structure considerately softer than predicted in the previous chapter. However,

addressing these issues thoroughly was beyond the scope of the work of this thesis.
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Stress-strain relations
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Fig. 6-1 Stress-strain relations in a nonlinear model

The CALREL-FEMCOD program currently does not possess the capability to handle
nonlinear problems and the resulting iterative solution procedure. Thus, a nonlinear
material law generated from ABAQUS must be linearized and equalized before it could
be used in macroscale analyses. Also, the current CALREL-FEMCOD program only has
a limited finite element library and has only been applied to two simple problems. All in
all, a lot of continuing and interesting work could be done in the future study based on

the basic idea and the program frame introduced in this thesis.
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APPENDIX

A. FORTRAN SOURCE FILES

C*********************************************************

¢} femcod. f

subroutine femcod (var,xrv)

implicit double precision (a-h,o-z),integer (i-n)

common iaa (1200),a(12000)

common /mpoint/ mpcord,mpfext,mpdisp,mpsurf, mptemp
,mpwork, mpstif, mpend, maxrel

. ,ipkfix,ipnod, ipiadr, ipmat, ipend, maxint

common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd

. ,nheq, length, nmat, nedge

common /rmatrl / rmat (10,10)

common /device/ iin, iout, ibug

character*80 card,uchar

dimension xrv (1)

c---- written by profs. m.e. plesha, r.d. cook & d.s. malkus
department of engineering mechanics
university of wisconsin--madison

sept., 1984

march, 1988 revised

version 3.28.89.1

c---- modified by Wei Yang

c May, 2000

c

c For 8-node isoparametric element for 2-D problem

c This modified FEMCOD is a subroutine called by CALREL

c
iin=10
iout=11
open (unit=10,status='old',file="mesh.in', form='formatted")
open (unit=11,status="unknown',file='mesh.out', form='formatted')
maxrel=12000

maxint=1200
ibug=1

c---- read title card and control data
read(iin, ' (a80) ') card
read(iin, ' (a80) ")uchar
read(iin, ' (815) ') ietype, numnp, ndof, numel, nnpe, nsd, nmat, nedge
write (iout, ' (a80) ')card
write (iout, ' (a80) '")uchar

write (iout,2001)

neg=numnp*ndof

call wi ('numnp ', numnp ,

call wi('ndof ', ndof ,

call wi('numel ', numel ,

call wi('nnpe ', nnpe ,

call wi('nsd ', nsd ,

73



C———-

C———-

c-——-

C———-

c———-

C———-

C———-

call
call

wi('nmat
wi ('neq

', nmat ,1)
', neq , 1)

initialize memory pointers
mpcord=1
mpfext=mpcord+numnp*nsd
mpdisp=mpfext+numnp*ndof
mpsurf=mpdisp+numel *nedge*2
mptemp=mpsurf+numnp*ndof
mpwork=mptemp+numnp
mpstif=mpwork+numnp*ndof
mpend=mpstif

ipkfix=1
ipnod=ipkfix+numnp*ndof
ipiadr=ipnod+numel *nnpe
ipmat=ipiadr+numnp*ndof

ipend=ipmat+numel

write (iout,2002)

call '( mpcord ',mpcord,l)
call wi('mpfext ', mpfext, 1)
call wi('mpdisp ',mpdisp,1)
call wi('mpsurf ',mpsurf,1)
call wi('mptemp ',mptemp,1l)
call w1( mpwork ',mpwork,1)
call wi('mpstif ',mpstif,1)
call wi('ipkfix ',ipkfix,1)
call wi('ipnod ',ipnod ,1)
call w1( ipiadr ',ipiadr,1)
call w1( ipmat ',ipmat ,1)
call wi('ipend ',ipend , 1)
call w1( maxrel ', maxrel, 1)
call wi('maxint ', maxint, 1)

check available memory

call mcheck (mpend, ipend, maxrel,maxint)
complete data input

call inputf (a (mpcord),a(mpfext),a (mpsurf),a (mptemp),
iaa(ipkfix),iaa(ipnod),iaa (ipmat), xrv)

determine egn-system column heights, diag addresses,length and

mean semi-bandwidth, mband

call colht(iaa(ipnod),iaa(ipkfix),iaa(ipiadr),neq, numnp,numel,
nnpe,ndof, length, mband)

allocate storage for stiffness matrix
mpend=mpstif+length
write (iout,2003)

call wi ('mband ', mband, 1)
call wi('length ,length, 1)
call wi('mpend ', mpend ,1)

check available memory
call mcheck (mpend, ipend, maxrel,maxint)

clear stiffness
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do 10 i=mpstif,mpstif+length-1
a(i)=0.

form stiffness matrix
call axistf (a(mpcord),iaa(ipkfix),iaa(ipnod),iaa (ipiadr)
,laa (ipmat),a(mpstif),a (mpfext),a (mpsurf),a (mptemp))

modify stiffness and load vector to account for prescribed displ
call modify(a(mpstif),a(mpfext),iaa(ipkfix),iaa(ipiadr),
neq, length)

factorize stiffness and check for possible error in factorization

iop=1

tol=1.e-06

zero=0.

call trfact(a(mpstif),zero,a(mpwork),iaa(ipiadr),tol,neq, length,
ierror, iposdf, iout, iop)

if(iposdf.ne.0) call wi('iposdf ', iposdf,1)

transfer external force to displacement array
do 30 i=1,neq
a (mpdispt+i-1)=a (mpfext+i-1)

solve simultaneous equations

iop=2

zero=0.

izero=0

call trfact(a(mpstif),a(mpdisp),zero,iaa(ipiadr),zero,neq, length,
izero,izero,izero, iop)

output displacement solution

write (iout,2004)
write (iout,2005)
write (iout,2006)
((i,3,a(mpdisp+ (i-1) *ndof+j-1), Jj=1,ndof),i=1, numnp)
post-process data
call axistr(a(mpcord),iaa(ipnod),iaa(ipmat),a (mpdisp),a (mptemp)
,var)

close(iin)
close (iout)

return

format (//,21h program control data,/,1x,20(lh-))
format (//,3%h real and integer array memory pointers,/,
1%,38 (1h-))
format (36h stiffness matrix storage parameters,/,1x,35(1lh-))
format (//,21h nodal point solution,2x,
39h (node #, nodal dof #, value of the dof),/,
1%,43 (1h-))

format (1x, 37hnode Ur Uz)

format (2(214,e13.5,2x))

end



C*********************************************************

c input. f
e
c
subroutine inputf (x, f,surfld, temp, kfix,nod, mat, xrv)
c
implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,nheq, length, nmat, nedge
common /rmatrl / rmat (10,10)
common /device/ iin, iout, ibug
dimension x (nsd,numnp), f (ndof, numnp), kk(6),kfix (ndof, numnp),
nod (nnpe, numel) ,mat (numel) , temp (numnp) ,
. surfld(2*nedge, numel) ,xrv(1l),const (5)
character*80 uchar
c
read(iin, ' (a80) '")uchar
c
c---- read nodal data
do 100 i=1,numnp
read (iin,2000)n, (kk(3),3=1,6), (x(k,1),k=1,nsd),
(f(1,i),1=1,ndof)
do 50 j=1,ndof
kfix (j,n)=kk ()
50 continue
100 continue
c
read(iin, ' (a80) ")uchar
¢}
c---- element data
do 200 i=1,numel
read(iin,3000)n,mat (i), (nod(j,i), =1, nnpe)
200 continue
¢}
read(iin, ' (a80) ")uchar
c
do 250 i=1,numel
read(iin, 3500)n, (surfld(k,1i), k=1, 2*nedge)
250 continue
c
read(iin, ' (a80) ')uchar
¢}
c---- read material properties

do 300 i=1,nmat
rmat (6, 1)=xrv (2*1)
volrat=xrv (2*i-1)
call lookup(volrat, const)
do 300 j=1,5
rmat (j, 1)=const (j)

300 continue
write(*,4000)n, (rmat(j,1l),3j=1,5)

read(iin, ' (a80) ")uchar
return

1001 format (2x,60(1lh-))

2000 format (i5,4x,61il,2el2.4,/,15x%x,2el12.4)
3000 format (101i5)

3500 format (i5,8el2.4)



4000
c

format (1i5,10el12.4)

end

C
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Subroutine to get information from property look-up table
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volrat: volume ratio
const: material constants

subroutine lookup(volrat, const)
implicit double precision (a-h,o-z),integer (i-n)

common /device/ iin, iout, ibug
dimension const(5), table(5,5)

open (unit=15,status='old',6 file="table.txt',form='formatted"')

do 10 i=1,5
read (15, '(5el2.4)') (table(i,j),J=1,5)
continue

if (volrat.gt.0.7 .or. volrat.lt.0.3) then
write (iout, *) 'Not a valid volume ratio'
stop

end if

if (volrat.ge.0.3 .and. volrat.lt.0.4) then
do 20 i=1,5

const (i)=(table(1l,i)*(0.4-volrat)+table(2,1i)* (volrat-0.

/(0.4-0.3)
continue
else if (volrat.ge.0.4 .and. volrat.lt.0.5) then
do 30 i=1,5

const (i)=(table(2,1i)*(0.5-volrat)+table(3,1i) * (volrat-0.

/(0.5-0.4)
continue
else if (volrat.ge.0.5 .and. volrat.lt.0.6) then
do 40 i=1,5

const (i)=(table(3,1)*(0.6-volrat)+table(4,1i)* (volrat-0.

/(0.6-0.5)
continue
else if (volrat.ge.0.6 .and. volrat.le.0.7) then
do 50 1i=1,5

const (i)=(table(4,1i)*(0.7-volrat)+table(5,1i)* (volrat-0.

/(0.7-0.6)
continue
end if

close (15)
return

end
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c*********************************************************
c adstif.f

e
c

subroutine adstif (kfix, s, fext,nod, iadres,t,re,itrow, kele, iop)

implicit double precision (a-h,o-z), integer (i-n)

common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd

. ,neq, length, nmat, nedge

dimension kfix(neq),s(length), fext (neq),nod (nnpe,numel),
iadres (neq),t(itrow,itrow),re(itrow)

---- assemble element stiffness and optionally element load vector
into global stiffness matrix and global load vector.
homogeneous b.c. are enforced by not assembling diagonal,
row and column terms; it is assumed that corresponding force
terms have been set to zero by input data.
usage:
kfix fixity array. for dof number m, fixity is:

if kfix (m)=0 unconstrained
=1 zero prescribed value
=2 nonzero prescribed value

S global stiffness matrix.
fext external force vector.
nod element nodal connectivity array.

iadres array containing storage locations of diagonal terms of
stiffness matrix. not used by this subroutine directly,
but necessary for subroutine locsky.

t element stiffness matrix

re if iop=0, not used.
if iop=1, element load vector.

itrow row and column dimension of t (and re, if used) in calling

program.
kele element number being assembled (input).
iop if iop=0, assemble element stiffness matrix only.

if iop=1, assemble element stiffness matrix and element
load vector.

o000 0000000000n

do 100 igen=1,nnpe
do 100 jgen=1,nnpe
iglb=ndof* (nod(igen, kele)-1)
jglb=ndof* (nod(jgen, kele)-1)

c
do 100 idof=1,ndof
do 100 jdof=1,ndof

c---- 1f lower triangular element, skip assembly
if (iglb+idof.gt.jglb+jdof) go to 100

c---- enforce boundary condition:

c---- 1f zero-constrained dof, skip assembly

if(kfix (iglb+idof) .eq.l .or. kfix(jglb+jdof).eqg.l) go to 100
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c
jadd=locsky (iglb+idof, jglb+jdof, iadres, neq)
s (jadd)=s(jadd) +t (ndof* (igen-1) +idof,ndof* (jgen-1) +jdof)
100 continue
c
if(iop.ne.l) return
c---- assemble element load vector into global load vector
do 200 igen=1,nnpe
iglb=ndof* (nod(igen, kele)-1)
do 200 idof=1,ndof
c---- skip assembly if this is a zero or nonzero prescribed dof
if(kfix (iglb+idof).ge.1l) go to 200
fext (iglb+idof)=fext (iglb+idof) +re (ndof* (igen-1)+idof)
200 continue
c
return
end
c
c called by femcod
C call modify(a(mpstif),a(mpfext),ia(ipkfix),ia(ipiadr),neq,length)
c
subroutine modify (s, fext,kfix,iadres, neq, length)
implicit double precision (a-h,o-z), integer (i-n)
dimension kfix(neq), fext (neq), s (length),iadres (neq)
c
c---- subroutine to modify the stiffness matrix and load vector to
c account for zero and nonzero prescribed displacements.
c information for dof m contained in fext is assumed to be:
c
c fext (m)= force or load if dof m is unconstrained (kfix (m)=0)
c = 0. if dof m is zero prescribed (kfix(m)=1)
c = value of the nonzero prescribed displacement if dof m
c is nonzero prescribed (kfix (m)=2)
c
c---- scan all dof and modify for those that are prescribed
do 100 k=1,neq
c
if(kfix (k) .ne.1l) go to 50
c---- d.o.f. has prescribed zero value--enter unit value on diagonal
c---- of stiffness matrix (off-diag. terms made zero by sub. adstif)
kdiag=iadres (k)
s (kdiag)=1.0
go to 100
c
50 if(kfix (k) .ne.2) go to 100
c---- d.o.f. has prescribed nonzero value:
c---- modify load vector then zero off-diagonal stiffness coeff.
kdiag=iadres (k)
ktop=kdiag
if(k.ge.2) ktop=iadres(k-1)+1
kegtop=ktktop-kdiag
mpnter=ktop-1
c—-—--- loop over stiffness coefficients in columnwise order
do 10 m=keqgtop, k-1
mpnter=mpnter+1
c---- skip modification if dof m 1is also a nonzero prescribed dof

10

if(kfix(m) .ne.2) fext (m)=fext (m)-s (mpnter)*fext (k)
s (mpnter)=0.
continue
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loop over stiffness coefficients in rowwise order using function
subroutine locsky to return the 1-d stiffness address

do 20 meg=k+1l,neq

kmeglo=locsky (k,meq, iadres, neq)

if stiffness coefficient is outside skyline, skip to end of loop
if (kmeglo.eq.0) go to 20

skip modification if dof meg is also a nonzero prescribed dof
if(kfix (meq) .ne.2) fext (meq)=fext (meq)-s(kmeqglo) *fext (k)

s (kmeglo)=0.

continue

modify diagonal term for equation k

s (kdiag)=1.0

continue
return
end

called by femcod

call trfact(a(mpstif),zero,a(mpwork),ia(ipiadr),tol,neq, length,
ierror,iposdf, iout, 1)

call trfact(a(mpstif),a(mpdisp),zero,ia(ipiadr),zero,neq, length,
izero,izero, izero, 2)

subroutine trfact(a,b,g,iadres,tol,n,length,ierror,iposdf, iout,
iop)

implicit double precision (a-h,o-z), integer (i-n)

dimension a(length),b(n),g(n),iadres (n)

given the system of simultaneous equations ax=b, a symmetric and
b specified, this subroutine triple-factors a into u(trans) *d*u
and then performs forward/back substitution to obtain the solu-
tion x. a can be positive or negative definite. warnings are
issued if the subroutine detects possible singularity or lack of
positive definiteness. this subroutine employs the fortran77
standard in which do loops are not executed if the beginning
index is larger than the ending index.

usage:
a for iop=1 or 3, a contains, on input, the a-coefficients
of ax=b stored in compacted column (skyline) form accord-
ing to the scheme:
e.g., i a(l) a(2) a(o) i
i a(3) a(4) a(7) i
i a(5) a(8) i
i a(9) .1
i : i
on output, d and u overwrite the diagonal and upper-diag.
coefficients of a, respectively.
for iop=2, a must contain, on input, the coefficients of
d and u, which were obtained from a prior call to sub-
routine trfact with iop=1 or 3.
b for iop=1, not used.

for iop=2 or 3, b contains, on input, the specified right-
hand-side and on output, the solution x overwrites Db.
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g for iop=1 or 3, work vector of length n.
for iop=2, not used.

iadres input vector of length n that contains the addresses of
the diagonal coefficients of a.

tol for iop=1 or 3, input parameter specifying tolerance for
decay of diagonal coefficients. taking tol=10**(-p) will
indicate an error (nonzero value of ierror and a message
printed to i/o unit # iout) if the p leading digits of any
pivot element are lost compared to its original value.
for general purpose finite element equation solving, a
value for p equal to about one-half the number of digits
for floating point numbers is appropriate. larger and
smaller values of p provide for less stringent and more
stringent tests on diagnonal decay, respectively.
for iop=2, not used.

n number of equations (input).

length length in words of 1-d array a (input).

ierror for iop=1 or 3, on output ierror=0 if abs(d(k,k)/a(k,k))
is greater than tol for all k between 1 and n. otherwise,
ierror is equal to the row number of the first equation
that did not satisfy the test. failure of the test is
also printed by the subroutine on i/o unit number iout
if iout is greater than zero, otherwise the message is
suppressed.
for iop=2, not used.

iposdf for iop=1 or 3, on output iposdf=0 if the matrix is pos-
itive definite, and iposdf=-1 if the matrix is not
positive definite.

iout for iop=1 or 3, input parameter specifying input/output
unit number for printing of warning message in the event
that diagonal decay is detected. to suppress printing of
the message, iout should be zero or negative.
for iop=2, not used.

iop input parameter specifying solution option:

iop=1 factorization only
=2 forward/back substitution only
=3 factorization and forward/back substitution

if(iop.eg.2) go to 50

factorization

ierror=0

iposdf=0

do 40 k=2,n
kdiag=iadres (k)
ktop=iadres (k-1)+1

kegtop=
ipnter=

k+ktop-kdiag
ktop-1
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do 20 i=keqtop, k-1
ipnter=ipnter+1l
idiag=iadres (i)

itop=idiag

if(i.ge.2) itop=iadres(i-1)+1
iegtop=it+itop-idiag

sum=0.

mpnter=itop-1

in following do loop, skip over g's that are above skyline
if (kegtop.gt.iegtop) mpnter=mpnter+kegtop-iegtop

do 10 m=max (kegtop,iegtop),i-1

mpnter=mpnter+1

sum=sum+a (mpnter) *g (m)

a(ipnter)=(a(ipnter)-sum) /a (idiag)

g(i)=a(idiag) *a (ipnter)

sum=0.

mpnter=ktop-1

do 30 m=keqgtop, k-1

mpnter=mpnter+1

sum=sum+a (mpnter) *g (m)

temp=a (kdiag)

a(kdiag)=a (kdiag)-sum

check for decay of diag. coeff. and positive definiteness

if(ierror.gt.0) go to 40

ratio=a (kdiag) /temp

if (abs(ratio) .gt.tol) go to 40

ierror=k

if(iout.gt.0) write(iout,1000)ratio,ierror

if(a(kdiag) .1lt.0.) iposdf=-1

format (///,34h subroutine trfact wa r n i n g:,/,
24h diagonal decay ratio of,el0.3,
21h detected in equation,i6,///)

if(iop.eg.l) return

continue

forward substitution
do 70 k=2,n
kdiag=iadres (k)
ktop=iadres (k-1)+1
kegtop=ktktop-kdiag
mpnter=ktop-1

sum=0.

do 60 m=kegtop, k-1
mpnter=mpnter+1
sum=sum+a (mpnter) *b (m)
b (k)=b (k) -sum

back substitution
do 80 k=1,n
kdiag=iadres (k)

b (k)=b (k) /a(kdiaqg)
do 90 k=n,2,-1
kdiag=iadres (k)
ktop=iadres (k-1)+1
kegtop=k+ktop-kdiag
mpnter=ktop-1
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do 90 m=keqgtop, k-1
mpnter=mpnter+1l

90 b (m)=b (m)-a(mpnter) *b (k)
return
end
c
subroutine mcheck (mpend, ipend, maxrel,maxint)
implicit double precision (a-h,o-z),integer (i-n)
common /device/ iin, iout, ibug
c
c---- check if memory requirements (mpend and ipend) exceed the
c maximum storage declared in calling program (maxrel and maxint)
c if so, issue error message and stop program execution
c
if (mpend.le.maxrel .and. ipend.le.maxint) return
write (iout,100)
stop
100 format(///,34h memory error: insufficient memory ///,
50h program execution terminated by subroutine mcheck)
end
c
subroutine colht (nod, kfix, iadres, neq, numnp, numel, nnpe, ndof,
. length, mband)
implicit double precision (a-h,o0-z), integer (i-n)
dimension iadres (neq),nod (nnpe,numel),kfix (ndof, numnp)
c
c---- scan element connectivity to determine the column heights and
c diagonal storage locations for l-dimensional compact column
c storage according to the scheme:
c
c e.g., i a(l) a(2) a(o) i
c i a(3) a4) al(7) i
c i a(b) a(8) i
c i a(9) .1
C i : i
c
c this subroutine first scans the dof of all elements to determine
c column heights which are stored in iadres. zero-dispacement dof
c do not influence column heights. second, the locations in a 1-d
c array of the diagonal coefficients is computed and stored in
c iadres. note that the total amount of storage for the 1-d
c compacted stiffness matrix is equal to iadres(neq). also comput-
c ed is the mean, or average, semi-bandwidth, mband.
c
c---- set initial column heights (i.e., heights for a diagonal matrix)
do 10 i=1,neq
10 iadres(i)=1
c
c—-—--- loop over number of elements
do 30 n=1,numel
c
c—---- loop over combinations of nodes in element n
do 30 iii=1,nnpe
ii=nod(iii, n)
do 30 jjj=1,nnpe
jj=nod(jjj,n)
c
c---- loop over combinations of dof for global node numbers ii and 3jj
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do 30 i=1,ndof

if this dof has prescribed zero value, skip to end of loop
if(kfix(i,1ii).eqg.l) go to 30

idof=(1ii-1) *ndof+1i

do 20 j=1,ndof

if this dof has prescribed zero value, skip to end of loop
if(kfix(j,Jjj) .eqg.1l) go to 20

jdof=(jj-1) *ndof+j

if idof,jdof is on diagonal or below, skip to end of loop
if(idof.ge.jdof) go to 20

idof,jdof location is above diagonal--adjust column height
newhgt=jdof-idof+1

if (newhgt.gt.iadres (jdof)) iadres (jdof)=newhgt

continue

continue

compute addresses of diagonal entries using column heights
do 50 i=2,neq

iadres (i)=iadres (i-1)+iadres (i)

length=iadres (neq)

compute mean semi-bandwidth, mband

mband=ifix ((2.*float (neq)+1l.-sqgrt ((2.*float (neq)+1.)**2-
8.*float (length)))/2.)

return

end
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function locsky (i, j,iadres, neq)
implicit double precision (a-h,o-z), integer (i-n)
dimension iadres (neq)

this function subprogram provides the address in a 1-d
array corresponding to an i,j address in a 2-d array that
is stored in compact column (skyline) form.

usage:
i, 3 row and column numbers (input) .

iadres input array of length neqg that contains the addresses in

a 1-d array for the diagonal entries in a 2-d array.
neq number of rows (equations).

locsky on output, equal to the 1-d address for (i,]j) unless
(i,J) is below diagonal or above skyline, in which
case a value of zero is returned.

check if (i,3J) is below diagonal
if(i.gt.j) go to 10

jdiag=iadres (j)

jtop=jdiag

if(j.gt.1l) jtop=iadres(j-1)+1
locsky=jdiag-j+i

check if (i,3) is above skyline
if (locsky.ge.jtop) return

84



c
c---- (1,3) location is either below diagonal or above skyline
10 locsky=0
return
end
c
subroutine wi (id, i, iop)
implicit double precision (a-h,o-z), integer (i-n)
common /device/ iin, iout, ibug
character*8 id
if (iop.gt.ibug) return
write (iout,100)id, 1
100 format(lh ,a8,1h=,i10)
return
end
c

100

subroutine wr (id, r,iop)

implicit double precision (a-h,o-z), integer (i-n)
common /device/ iin, iout, ibug

character*8 id

if (iop.gt.ibug) return

write (iout,100)id, r

format (1h ,a8,1lh=,gl15.5)

return

end
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2**********************************************************
c axis.f
i
c
subroutine axistf (xx,kfix,nod,iadres,matnum, s, fext,surfld, tt)
c
c call axistf (a(mpcord),ia(ipkfix),ia(ipnod),ia(ipiadr),ia(ipmat),
c a(mpstif),a(mpfext),a(mpsurf),a(mptemp))
¢}
c
c form stiffness matrix for 8-node axisymmetric element
c
c written by Zheng Huang and Wei Yang April,
c
implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,nheq, length, nmat, nedge
common /rmatrl/ rmat (10,10)
common /device/ iin, iout, ibug
dimension xx(nsd,numnp), kfix (neq),nod (nnpe,numel),
iadres (neq) ,matnum(numel), s (length), fext (neq),
surfld(2*nedge, numel) , x (2, 8)
c x (nsd, nnpe)
dimension xi(3,3),eta(3,3),e(4,4),bte(16,4),eps0(4)
,stfk(16,16),ww(3),ret(16),res(16),re(l6)
. ,b(4,16),elk(16,106),dtp(8),sfld(2,4),rett (16)
dimension shapef (8),dsfxi(8),dsfeta(8)
double precision Jj(2,2)
¢}
c---- define integration point in local coordinates
do 10 i=1,3
eta(i,1l)=-sgrt(0.6)
eta(i,2)=0.0
eta(i,3)=sqrt(0.6)
10 continue
do 20 j=1,3
xi(1l,])=-sqrt(0.6)
xi(2,3)=0.0
xi(3,3)=sgrt(0.6)
20 continue
c---- weight factors
ww(1)=5.0/9.0
ww(2)=8.0/9.0
ww(3)=5.0/9.0
c
c---- Assemble stiffness matrix for each element
do 100 n=1,numel
c
c---- get nodal coordinates and temperature
do 40 i=1,nnpe
x(1,1)=xx(1l,nod (i, n))
X(2,1)=xx(2,nod (i, n))
c dtp (i)=tt (nod(i,n))
40 continue
c
c—---- get element surface load

do 45 i=1,nedge
sfld(l,i)=surfld(2*i-1,n)
sfld(2,1)=surfld(2*i,n)
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continue

evaluate material matrix, e, for axisymmetrix element
mat=matnum(n)

call ematrx(e,mat)

alpha=rmat (3, mat)

call ematrx(e,mat)
thick=rmat (7, mat)

initialize element stiffness matrix to 0.
do 60 i=1,16
do 60 j=1,16
elk(i,3)=0.0
continue

inital thermal load vertor
do 65 i=1,16

ret (i)=0.
continue

loop over each integration point
do 30 i=1,3
do 30 j=1,3

vxi=xi(i,])

veta=eta (i, Jj)

compute shape function and shape function derivatives
call findn(vxi,veta,x,shapef,dsfxi,dsfeta,r,jj,det])

compute B matrix
call findb (shapef,dsfxi,dsfeta,r,jj,detj,b)

sum of element stiffness matrix at integration points
call findk(b,e,r,detj,stfk,bte, thick)

numerical integration (sum at integration point)

do 50 is=1,16

do 50 js=1,16
elk(is,Js)=elk(is,js)+tstfk(is,js) *ww (i) *ww(])

continue

compute thermal load vector 'ret(1l6)'
call axitlv(alpha,bte,dtp,shapef,r,det]j,rett,epsO)

numerical integration
do 55 is=1,16
ret (is)=ret (is)+rett (is) *ww (i) *ww(7j)
continue

continue

compute surface load vector

ip=1 surface load in normal and tangential direction
ip=2 surfcae load in global coordinates

call axislv(x,sfld, res,ip)

call axislv(x,sfld, res,1,thick)

compute total element load vector
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do 70 i=1,16

¢} re (i)=ret (i)+res (i)
re(i)=res (1)
70 continue
c
c—-—--- assemble stiffness matrix and element load vector
call adstif (kfix,s, fext,nod,iadres,elk,re,16,n,1)
c
100 continue
¢}
return
end
¢}
subroutine axislv(x,sfld,res,ip, thick)
c
c ip=1 surface load in normal and tangential direction
c ip=2 surfcae load in global coordinates
c
implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,nheq, length, nmat, nedge
dimension xi(2,4), eta(2,4)
dimension shapef (8),dsfxi(8),dsfeta(8),x(2,8),ww(2)
dimension sfld(2,4),res(16),vres(16,4)
double precision nst(16,2),33(2,2),3s(2),]jt
¢}
c---- Integration points on the edges
vt=1./sqrt (3.)
xi(1l,1)=-vt
xi(2,1)=vt
eta(l,1)=-1.0
eta(2,1)=-1.0
xi(1,2)=1.
xi(2,2)=1.
eta(l,2)=-vt
eta(2,2)=vt
xi(1,3)=-vt
x1i(2,3)=vt
eta(l,3)=1.0
eta(2,3)=1.0
xi(1,4)=-1.
xi(2,4)=-1.
eta(l,4)=-vt
eta(2,4)=vt
c
c---- weight factor
ww(l)=1.
ww (2)=1.
c
c---- initialize res(3j)
do 60 j=1,16
res (3)=0.
60 continue
¢}
c---- evaluate surface traction along edges
do 80 n=1,nedge
¢}
c——-- initialzie vres (i, n)

do 90 j=1,16
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c———-

C———-

C———-

41

40

C———=

vres(j,n)=0.

do 30 i=1,2

vxi=xi (i, n)
veta=eta (i, n)

evaluate shape functions at integration point
call findn(vxi,veta,x,shapef,dsfxi,dsfeta,r,jj,det])

clear Ns(transpose)
do 10 is=1,16
do 10 j=1,2
nst(is,j)=0.
continue
computer Ns (transpose)
do 20 is=1,8
nst (2*is-1,1)=shapef (is)
nst (2*is, 2)=shapef (is)
continue

if (ip.eg.l) then
local surface load in

sfld(1l,n): surface load in normal direction
sfld(2,n): surface load in tangential direction

evaluate 'Js'
if (n.eqg.l) then

js(1)=-sfld(2,n)*jj(1,1)+sfld(1l,n)*33(1,2)
js(2)=-sfld(l,n)*jj(1,1)-sfld(2,n)*33(1,2)

else if(n.eqg.2) then
js(1)=sfld(2,n)*33(2,1)+sfld(1,n)*jj(2,2)
3s(2)=sfld(1l,n)*jj(2,1)-sf1d(2,n)*33(2,2)
else if(n.eq.3) then
js(1)=s£f1ld(2,n)*33j (1,1)-s£1ld(1,n)*33 (1,2)
js(2)=sfld(1l,n)*33(1,1)+sfld(2,n)*jj(1,2)
else if(n.eqg.4) then

js(l)=-sfld(2,n)*33(2,1)-sfld(l,n)*33(2,2)
js(2)=-sfld(1,n)*3j(2,1)+s£1ld(2,n) *33 (2,2)

end if

Ns (transpose) *r*Js
do 40 j=1,16
v=0.
do 41 k=1,2
if (ietype.eqg.l) then
v=v+nst (J, k) *r*js (k)
else if (ietype.eqg.2) then
v=v+nst (j, k) *js (k)

else
v=v+nst (J, k) *thick*js (k)
end if
continue
vres (j,n)=vres(j,n) +v*ww (i)
continue

elseif (ip.eqg.2) then
surface load in global coordinates
sfld(l,n): surface load in x direction
sfld(2,n): surface load in y direction
if (n.eq.l) then
jt=sqrt(jj(1,1)**2+33(1,2)**2)
else if(n.eqg.2) then

&9



Jt=sqrt(jj(2,1)**2+33j(2,2)**2)
else if(n.eq.3) then

jt=sqrt (jj(1,1)**2+33(1,2)**2)
else if(n.eqg.4) then

Jt=sqrt(jj(2,1)**2+33j(2,2)**2)

end if
end if
c
c———- Ns (transpose) *r*Js
do 45 j=1,16
v=0.
do 46 k=1,2
if(ietype.eqg.l) then
v=v+nst (j, k) *sfld(k,n) *r*jt
else if (ietype.eqg.2) then
v=v+nst (j, k) *sfld(k,n) *jt
else
v=v+nst (j, k) *sfld(k,n) *thick*jt
end if
46 continue
vres (j,n)=vres (j,n)+v ww (i)
45 continue
c
30 continue
c
c---- compute element surface load vector
do 50 j=1,16
res (j)=res(j)+vres(j,n)
50 continue
¢}
80 continue
c
return
end
c
subroutine ematrx (e,mat)
implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,neq, length, nmat, nedge
common /rmatrl / rmat(10,10)
dimension e(4,4),temp(4,4)
dimension trans(4,4), transt(4,4)
c
c---- evaluate material property matrix D
c
c this subroutine calculate material constants
c for material type mat:
c rmat (1,mat)=modulus of elasticity E1
c rmat (2, mat)=modulus of elasticity E2
c rmat (3,mat)=poisson's ratio vl12
c rmat (4,mat)=poisson's ratio v23
C rmat (5, mat)=G12
¢}

exl=rmat (1,mat)
ex2=rmat (2, mat)
v12=rmat (3,mat)
v23=rmat (4,mat)
gl2=rmat (5,mat)
v21l=vl2*ex2/exl

90
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v32=v23
v13=v1l2
ex3=ex?2

if (ietype.eg.l) then
delta=(1-v12*v12-v23*v32-v31*v13-2*v21*v32*v13)/ (exl*ex2*ex3)
e(l,1)=(1-v23*v32)/ (ex2*ex3*delta)
e(l,2)=(v21+v31*v23)/ (ex2*ex3*delta)
1, v31+v21*v32)/ (ex2*ex3*delta)

()
Il

(1,2)
1-v13*v31l)/ (exl*ex3*delta)
v32+v12*v3l) / (exl*ex3*delta)

(1,3)
(2,3)
1-v12*v21l)/ (exl*ex2*delta)
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(
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else if (ietype.eqg.2) then
delta=(1-v12*v12-v23*v32-v31*v13-2*v21*v32*v13)/ (exl*ex2*ex3)
e(l,1)=(1-v23*v32)/ (ex2*ex3*delta)

e(l,2)=0
e(l,3)=(v31+v21*v32)/ (ex2*ex3*delta)
e(l,4)=0
e(2,1)=0
e(2,2)=0
e(2,3)=0
e(2,4)=0
e(3,1)=e(1,3)
e(3,2)=0
e(3,3)=(1-v12*v21l)/ (exl*ex2*delta)
e(3,4)=0
e(4,1)=0
e(4,2)=0
e(4,3)=0
e(4,4)=gl2
else
e(l,1l)=ex1/(1-v12*v21)
e(1l,2)=0
e(l,3)=(vli2*ex2)/ (1-v12*v21)
e(l,4)=0
e(2,1)=0
e(2,2)=0
e(2,3)=0
e(2,4)=0
e(3,1)=e(1,3)
e(3,2)=0
e(3,3)=ex2/(1-v12*v21)
e(3,4)=0
e(4,1)=0
e(4,2)=0
e(4,3)=0
e(4,4)=gl2

end if



C
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20

E matrix tranformation
the orientation angle takes effects.
call etrans(trans, transt,mat)
do 20 i=1,4
do 20 j=1,4
temp (1, 3)=0
do 20 k=1,4

temp (i, j)=temp (i, j)+transt (i, k) *e(k,])
continue
do 30 i=1,14

e(i,]
continue

i,Jj)+temp (i, k) *trans(k,Jj)

return
end

subroutine etrans (trans, transt,mat)

implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd

,neq, length, nmat, nedge

common /rmatrl / rmat(10,10)

dimension trans(4,4), transt(4,4)

theta=rmat (6, mat)
c=cos (theta)
s=sin (theta)
c2=c*c

do 10 j=1,4
transt (i, Jj)=trans(j, 1)
continue

return
end

92
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2**********************************************************
c axistr.f
i
c
subroutine axistr (xx,nod,matnum,dd, tt,var)
c
c axistr: 8-node quad stress
c
c---- compute and output state of stress in a quad (strs=e*b*d)
c
implicit double precision (a-h,o-z), integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,nheq, length, nmat, nedge
common /rmatrl / rmat (10,10)
common /device/ iin, iout, ibug
dimension xx(nsd,numnp),nod (nnpe,numel) ,matnum(numel),
dd (ndof, numnp) , tt (numnp) ,x(2,8) ,e(4,4),
strs(4,8),eta(4),xi(4),dtp(8),
str(4,150),idstr (150),bte(16,4),ret (16),
. xind (8),etand(8),sfg(4),strnd (4, 8)
dimension d(16),b(4,16),eps0(4),eps(4),bd(4)
dimension shapef (8),dsfxi(8),dsfeta(8)
double precision 33 (2,2)
c
c---- define integration point
x1(1)=-1/sgrt(3.)
x1(2)=1/sqrt(3.)
x1(3)=1/sqrt (3.)
x1(4)=-1/sqgrt (3.)
c
eta(l)=-1/sgrt(3.)
eta(2)=-1/sqrt(3.)
eta(3)=1/sqrt (3.)
eta(4)=1/sqgrt (3.)
c
xind (1)=-1
xind (2)=1
xind (3) =1
xind (4)=-1
xind (5) =0
xind (6) =1
xind (7)=0
xind (8)=-1
c
etand(1)=-1
etand (2)=-1
etand (3)=1
etand (4)=1
etand (5)=-1
etand (6)=0
etand(7)=1
etand (8) =0
c
c---- intialize nodal stress

do 11 i=1,numnp
idstr (1i)=0
do 11 j=1,4
str(j,1)=0.
11 continue
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c
c—---- loop over elements
do 100 n=1,numel
c
c——-- evaluate material matrix for plane stress
mat=matnum (n)
c alpha=rmat (3, mat)
call ematrx(e,mat)
c
c——-- collect nodal displacements
do 25 i=1,nnpe
do 25 j=1,ndof
d((i-1) *ndof+]j)=dd (j,nod (i, n))
25 continue
c
c———- get nodal coordinates and temperature
do 40 i=1,nnpe
x(1l,i)=xx(1l,nod(i,n))
x(2,1)=xx(2,nod(i,n))
c dtp (i)=tt (nod (i, n))
40 continue
c
c———-- intialize 'B' and 'epsO'
do 70 is=1,4
eps0 (is)=0.
do 70 js=1,16
b(is,js)=0.
70 continue
c
c——-- initialize nodal stresses of the element
do 75 ind=1,nnpe
do 75 j=1,4
strnd(j, ind)=0.
75 continue
c
c——-- evaluate stress at integration points
do 30 i=1,4
vxi=xi (1)
veta=eta (i)
c
c——-- compute shape function and shape function derivatives
call findn(vxi,veta,x,shapef,dsfxi,dsfeta,r,jj,det])
c
c-—--- compute B matrix
call findb (shapef,dsfxi,dsfeta,r,jj,detj,b)
c
c———-- compute thermal load vector
c call axitlv(alpha,bte,dtp,shapef,r,det]j, ret,epsO)
c
c——-- compute b*d
do 45 j=1,4
bd (3)=0.
do 45 k=1,16
bd (J)=bd(j) +b (7, k) *d (k)
45 continue
c
c———- substract initial strain
do 80 j=1,4

c eps (j)=bd(j) —epsO0(J)
eps (j)=bd(3)
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C———-
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100

C———-
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C———-

1000
2000

1001

continue

compute e*eps
do 60 j=1,14
strs(j,1)=0.
do 60 k=1,14
strs(j,i)=strs(j,i)+e(j, k) *eps (k)
continue

do 65 ind=1l,nnpe

vr=xind (ind) *sqrt (3.)
vs=etand (ind) *sqrt (3.)
sfg(l)=(l-vr)*(l-vs) /4.
sfg(2)=(1l+vr) * (1-vs) /4.
sfg(3)=(1l+vr)* (1+vs) /4.
sfg(4)=(1-vr)* (1+vs) /4.
do 66 j=1,4
strnd(j,ind)=strnd(j,ind) +strs(j, i) *sfg (i
continue
continue
continue

sum nodal stresses from different elements
do 35 ind=1,nnpe
ip=nod(ind, n)
do 34 j=1,4
str(j,ip)
continue

=str(j,ip)+strnd(j, ind)

)

A counter that tells how many nodal stress value added

idstr (ip)
continue

=idstr(ip) +1

continue

compute average nodal stresses
var=0.0
do 10 i=1,numnp
do 10 j=1,4
str(j,1i)=str(
if (str (1, l)
continue

i) /idstr (1)
gt var) var=str(l,1i)

output results
write (iout,1000)
write (iout,2000)
do 20 n=1,numnp

write (iout,1001)
continue

n, (str(i,n),i=1,4)

return
format (//,16h Nodal stresses,/,1x,55(1h-))
format (1x

, 53hNode sigmaR
format (15, 4e13.4)
end

sigmaTheta sigmaZ

taoZR)



C*********************************************************

c findb. f

e
c
subroutine findn(xi,eta,x,shapef,dsfxi,dsfeta,r,jj,det])
c
c---- compute shape funciton and shape function derivatives
c at integration points
c
implicit double precision (a-h,o-z),integer (i-n)
dimension shapef (8),dsfxi(8),dsfeta(8),x(2,8)
double precision j3j(2,2)
c
c---- evaluate shape functions at integration point
shapef (5)=(1- xi**2)*(l—eta)/2.
shapef (6)=(1+x1i)* (1l-eta**2) /2.
shapef (7)=(1-xi**2) * (1+eta) /2.
shapef (8)=(1-x1i)* (1l-eta**2) /2.
shapef (1)=(1-x1i) * (1-eta) /4.- (shapef (8) +shapef (5)) /2.
shapef (2)=(1+x1i) * (1-eta) /4.- (shapef (6) +shapef (5)) /2.
shapef (3)=(1+x1i)* (1+eta) /4.- (shapef (6)+shapef (7)) /2.
shapef (4)=(1-x1)* (1+eta) /4.- (shapef (8) +shapef (7)) /2.
c
c---- evaluate shape function deravitives at integration point
dsfxi(5)=-xi*(1l-eta)
dsfxi(6)=(l-eta**2)/2.
dsfxi(7)=-xi*(l+eta)
dsfxi(8)=-(l-eta**2)/2.
dsfxi(l)=-(l-eta)/4.-(dsfxi(8)+dsfxi(5))/2.
dsfxi(2)=(l-eta)/4.-(dsfxi (6)+dsfxi(5))/2.
dsfxi(3)=(l+eta)/4.-(dsfxi(6)+dsfxi(7))/2.
dsfxi(4)=-(l+eta)/4.-(dsfxi(8)+dsfxi(7))/2.
c
dsfeta (5)=-(1-xi**2) /2.
dsfeta (6)=-(1+x1) *eta
dsfeta(7)=(1-xi**2)/2.
dsfeta (8)=-(1- xi)*eta
dsfeta(l)=-(1-xi)/4.-(dsfeta (8)+dsfeta(5))/2.
dsfeta (2)=-(1+xi)/4.- (dsfeta (6)+dsfeta (5))/2.
dsfeta (3)=( 1+x1 /4 .- (dsfeta (6)+dsfeta(7))/2.
dsfeta(4)=(1-x1i)/4.-(dsfeta(8)+dsfeta(7))/2.
30 continue
c
c---- evaluate dz/deta, dr/dxi, dz/dxi,dr/deta => 7jj
drdxi=0.0
drdeta=0.0
dzdxi=0.0
dzdeta=0.0
do 40 is=1,8
drdxi=drdxi+dsfxi (is)*x(1,1is)
drdeta=drdeta+dsfeta(is) *x (1, 1is)
dzdxi=dzdxi+dsfxi (is)*x(2,1s)
dzdeta=dzdeta+dsfeta(is) *x (2, 1is)
40 continue
c
c—-—--- compute 'J'

33 (1, 1)=drdxi
33 (1, 2)=dzdxi
33 (2,1)=drdeta



73 (2,2)=dzdeta
detj=jj(1,1)*33(2,2)-33(1,2)*33(2,1)

c
r=0.0
do 80 is=1,8
r=r+shapef (is) *x (1, is)
80 continue
c
return
end
c
subroutine findb (shapef,dsfxi,dsfeta,r,jj,det]j,b)
¢}
c---- compute "B" matrix
c
implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,neq, length, nmat, nedge
dimension shapef (8),dsfxi(8),dsfeta(8),x(2,8),b(4,16),g9(5,5)
. ,h(5,16),f(4,5),work(4,5)
double precision jj(2,2)
c
c-—-—-- evaluate "G" (5x5)
c- initialization
do 50 is=1,5
do 50 js=1,5
g(is,Js)=0.0
50 continue
¢}
g(l,1)=33(2,2)/det]
g(3,3)=33(2,2)/det]
g(1,2)=-33(1,2)/det]
g(3,4)=-33(1,2)/det]
g(2,1)=-33(2,1)/det]
g(4,3)=-33(2,1)/det]
g(2,2)=33(1,1)/det]
g(4,4)=33(1,1)/det]
if (ietype.eq.l) g(5,5)=1.0
c
c---- evaluate "H" (5x16)
c- initialization
do 60 is=1,5
do 60 js=1,16
h(is,js)=0.0
60 continue
¢}
do 70 is=1,8
h(l,2*is-1)=dsfxi (is)
h(2,2*is-1)=dsfeta (is)
h(3,2*is)=dsfxi (is)
h(4,2*is)=dsfeta (is)
if (ietype.eqg.l) h(5,2*is-1)=shapef (is)
70 continue
¢}
c-—--- evaluate "F"

90

do 90 is=1,14
do 90 js=1,5
f(is,js)=0.0
continue

97



c
£(1,1)=1.0
£(4,2)=1.0
£(4,3)=1.0
£(3,4)=1.0
if (ietype.eq.l) £(2,5)=1.0/r
c
c—---- calculate "B"
c- work (4x5) =F(4x5) x G(5x5)
do 100 is=1,4
do 100 js=1,5
work (is,Js)=0.0
do 100 ks=1,5
work (is, js)=work(is,js)+f(is, ks)*g(ks,Js)
100 continue
c
c---- B(4x16) =work (4x5) x H(5x16)
do 200 is=1,4
do 200 js=1,16
b(is,js)=0.0
do 200 ks=1,5
b(is,js)=b(is, js)+work(is, ks) *h(ks,js)
200 continue
c
return
end
c
subroutine findk(b,e,r,detj,stfk,bte,thick)
c
c compute element stiffness matrix evaluated
c at integration points
c
implicit double precision (a-h,o-z),integer (i-n)
common /kontrl/ ietype,numnp,ndof,numel, nnpe,nsd
. ,neq, length, nmat, nedge
common /rmatrl / rmat(10,10)
dimension b (4,16),bt(16,4),e(4,4),stfk(16,16),bte(16,4)
c
c---- find B transpose-> BT
do 10 i=1,4
do 10 j=1,16
10 continue
c
c—---—- BT*E
do 20 i=1,16
do 20 j=1,4
bte (i,3)=0.
do 20 k=1,4
bte (i, j)=bte(i,j)+tbt (i, k) *e(k,])
20 continue
c
c--—— BT*E*B*r*|7|
if (ietype.eqg.l) then
c-——--- axisymmetric

do 30 i=1,16
do 30 §=1,16

stfk(i,3)=0.

do 30 k=1,4
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C———-

31

C———-

32

stfk(i,3j)=stfk(i,j)+tbte(i, k) *b(k,]J) *r*det]
continue
else 1if (ietype.eqg.2) then
plane strain
do 31 i=1,16
do 31 j=1,16
stfk(i,3)=0.
do 31 k=1,4
stfk(i,j)=stfk(i,j)+tbte (i, k) *b(k,]J) *det]
continue
else
plane stress
do 32 i=1,16
do 32 j=1,16
stfk(i,3)=0.
do 32 k=1,4
stfk(i,J)=stfk(i,])+tbte(i, k) *b(k,Jj) *thick*det]
continue
end 1if

return
end
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C*********************************************************

c user.f

c—-—--- user-defined subroutines to combine CALREL and FEMCOD

subroutine ugfun (g, x,tp,iq)
implicit real*8 (a-h,o0-z)
dimension x(1),tp (1)

c---- x vector is the random variable vector
c x1l: Volume ratio
c x2: Orientation angle
c
c—-—--- call femcod to finish the mechanical transformation
c var: returned value which will be used
c in limit-state function
c
call femcod (var,x)
¢}
c---- limit-state function
g = abs(tp(l))-abs(var)
c
return
end
¢}
c
subroutine udgx (dgx, x,tp,iq)
implicit real*8 (a-h,o-z)
dimension x(1),dgx(1l),tp (1)
return
end
¢}
subroutine udd(x,par,sqg,ids,cdf,pdf,bnd, ib)
implicit real*8 (a-h,o-z)
dimension x(1),par(4),bnd(2)
return
end
c
c

subroutine usize

common /blkrel/ mtot,np,ia(5000)
mtot=5000

return

end



B. FEMCOD INPUT FILE

Numerical example

.00000E+00
.00000E+00
.10000E+01
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.50000E+00
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.50000E+00
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.50000E+00
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.50000E+00
.00000E+00
.00000E+00
.00000E+00
.20000E+01
.00000E+00
.20000E+01
.00000E+00

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

eloNoholoNololoNoNoloNoNolNolNoNololNoloNoloNololololNoNololoNoNololNoNoNololoNoNoloNoloNoloNoloNoloNeN o)

ocNoNoNoNoNoNoloNoNolNoNoNoNoNoNoloNololoNoNoNoNoNoNololoRoNoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoNoNoRoNe]

-- mesh.in

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.50000E+00
.00000E+00
.20000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.30000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.40000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00

.00000E+0O0

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+0O0

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+0O0

.00000E+00

.00000E+0O0

.00000E+00

.00000E+00
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26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

eoNoNoloNoNoNoloNoloNoloNoloNolNolNololoNoloNoNoNolololoNoloNoNoNoloNooNololNoloNololohoNoNololNoNoNoNoNoloNoNoNoNoNoNoNeoN o]

.15000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.30000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.40000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00

cNeoNoRoNoNoNoNoNoNolNoNoNooNoloNoNoNoNoNoNoRololoNoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoloNololoNoNoNoNoNoNoNoNoRololoNoNoNe)

.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00
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56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

eoNoNoloNoNoNoloNoloNoloNoloNolNolNololoNoloNoNoNolololoNoloNoNoNoloNooNololNoloNololohoNoNololNoNoNoNoNoloNoNoNoNoNoNoNeoN o]

.35000E+01
.00000E+00
.40000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.50000E+01
.00000E+00
.50000E+01
.00000E+00
.45000E+01
.00000E+00
.50000E+01
.00000E+00
.45000E+01
.00000E+00
.50000E+01
.00000E+00
.50000E+01
.00000E+00
.45000E+01
.00000E+00
.50000E+01
.00000E+00
.50000E+01
.00000E+00
.45000E+01
.00000E+00
.50000E+01
.00000E+00
.50000E+01
.00000E+00
.45000E+01
.00000E+00
.60000E+01
.00000E+00
.60000E+01
.00000E+00
.55000E+01
.00000E+00
.60000E+01
.00000E+00
.55000E+01
.00000E+00
.60000E+01
.00000E+00

cNeoNoRoNoNoNoNoNoNolNoNoNooNoloNoNoNoNoNoNoRololoNoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoloNololoNoNoNoNoNoNoNoNoRololoNoNoNe)

.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00
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86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

eoNoNoloNoNoNoloNoloNoloNoloNolNolNololoNoloNoNoNolololoNoloNoNoNoloNooNololNoloNololohoNoNololNoNoNoNoNoloNoNoNoNoNoNoNeoN o]

.60000E+01
.00000E+00
.55000E+01
.00000E+00
.60000E+01
.00000E+00
.60000E+01
.00000E+00
.55000E+01
.00000E+00
.60000E+01
.00000E+00
.60000E+01
.00000E+00
.55000E+01
.00000E+00
.70000E+01
.00000E+00
.70000E+01
.00000E+00
.65000E+01
.00000E+00
.70000E+01
.00000E+00
.65000E+01
.00000E+00
.70000E+01
.00000E+00
.70000E+01
.00000E+00
.65000E+01
.00000E+00
.70000E+01
.00000E+00
.70000E+01
.00000E+00
.65000E+01
.00000E+00
.70000E+01
.00000E+00
.70000E+01
.00000E+00
.65000E+01
.00000E+00
.80000E+01
.00000E+00
.80000E+01
.00000E+00
.75000E+01
.00000E+00
.80000E+01
.00000E+00
.75000E+01
.00000E+00
.80000E+01
.00000E+00
.80000E+01
.00000E+00
.75000E+01
.00000E+00

cNeoNoRoNoNoNoNoNoNolNoNoNooNoloNoNoNoNoNoNoRololoNoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoloNololoNoNoNoNoNoNoNoNoRololoNoNoNe)

.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00
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116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

110000

100000

000000

100000

000000

100000

100000

000000

100000

100000

eoNoNoloNoNoNoloNoloNoloNoloNolNolNololoNoloNoNoNolololoNoloNoNoNoloNooNololNoloNololohoNoNololNoNoNoNoNoloNoNoNoNoNoNoNeoN o]

.80000E+01
.00000E+00
.80000E+01
.00000E+00
.75000E+01
.00000E+00
.80000E+01
.00000E+00
.80000E+01
.00000E+00
.75000E+01
.00000E+00
.90000E+01
.00000E+00
.90000E+01
.00000E+00
.85000E+01
.00000E+00
.90000E+01
.00000E+00
.85000E+01
.00000E+00
.90000E+01
.00000E+00
.90000E+01
.00000E+00
.85000E+01
.00000E+00
.90000E+01
.00000E+00
.90000E+01
.00000E+00
.85000E+01
.00000E+00
.90000E+01
.00000E+00
.90000E+01
.00000E+00
.85000E+01
.00000E+00
.10000E+02
.00000E+00
.10000E+02
.00000E+00
.95000E+01
.00000E+00
.10000E+02
.00000E+00
.95000E+01
.00000E+00
.10000E+02
.00000E+00
.10000E+02
.00000E+00
.95000E+01
.00000E+00
.10000E+02
.00000E+00
.10000E+02
.00000E+00

cNeoNoRoNoNoNoNoNoNolNoNoNooNoloNoNoNoNoNoNoRololoNoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoloNololoNoNoNoNoNoNoNoNoRololoNoNoNe)

.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00
.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00
.50000E+00
.00000E+00
.10000E+01
.00000E+00
.20000E+01
.00000E+00
.15000E+01
.00000E+00
.20000E+01
.00000E+00
.30000E+01
.00000E+00
.25000E+01
.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

105



146

147

148

149

O 00 Jo Ul W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

000000

100000

100000

000000

14
24
25
29
32
38
39
43
46
52
53
57
60
66
67
71
74
80
81
85
88
94
95
99
102
108
109
113
116
122
123
10 127
10 130

=
WWOWOOWWW®OWIJOOIJAOANNTUANTTUTE DB WWDEDWWNNDRE NN R

oNoNoloNoNoNeRe)

.95000E+01
.00000E+00
.10000E+02
.00000E+00
.10000E+02
.00000E+00
.95000E+01
.00000E+00

2 3

3 9

9 14
14 19
24 25
25 29
29 32
32 35
38 39
39 43
43 46
46 49
52 53
53 57
57 60
60 63
66 67
67 71
71 74
74 77
80 81
81 85
85 88
88 91
94 95
95 99
99 102
102 105
108 109
109 113
113 116
116 119
122 123
123 127
127 130
130 133
136 137
137 141
141 144
144 147

cNoNololoNoNoNe]

4
10
15
20

3

9
14
19
25
29
32
35
39
43
46
49
53
57
60
63
67
71
74
77
81
85
88
91
95
99

102
105
109
113
116
119
123
127
130
133

.30000E+01
.00000E+00
.40000E+01
.00000E+00
.35000E+01
.00000E+00
.40000E+01
.00000E+00
5
7 11
12 16
17 21
26 27
28 30
31 33
34 36
40 41
42 44
45 47
48 50
54 55
56 58
59 61
62 64
68 69
70 72
73 75
76 78
82 83
84 86
87 89
90 92
96 97
98 100
101 103
104 106
110 111
112 114
115 117
118 120
124 125
126 128
129 131
132 134
138 139
140 142
143 145
146 148

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

1 0.00000E+00 0.00000E+00 0.00000E+00 O
.00000E+00 0.11000E+05 0.00000E+00
2 0.00000E+00 0.00000E+00 0.00000E+00 O
.00000E+00 0.11000E+05 0.00000E+00
3 0.00000E+00 0.00000E+00 0.00000E+00 O
.00000E+00 0.11000E+05 0.00000E+00
4 0.00000E+00 0.00000E+00 0.00000E+00 O
.00000E+00 0.11000E+05 0.00000E+00
5 0.00000E+00 0.00000E+00 0.00000E+00 O
.00000E+00 0.00000E+00 0.00000E+00

7 8
12 13
17 18
22 23
28 6
31 11
34 16
37 21
42 27
45 30
48 33
51 36
56 41
59 44
62 47
65 50
70 55
73 58
76 61
79 64
84 69
87 72
90 75
93 78
98 83
101 86
104 89
107 92
112 97
115 100
118 103
121 106
126 111
129 114
132 117
135 120
140 125
143 128
146 131
149 134
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00
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6 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
7 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
8 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
9 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
10 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
11 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
12 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
13 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
14 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
15 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
16 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
17 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
18 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
19 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
20 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
21 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
22 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
23 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
24 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
25 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
26 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
27 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
28 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
29 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
30 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
31 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
32 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
33 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
34 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00
35 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+0O0

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+0O0

.00000E+00

.00000E+00

.00000E+00

.00000E+0O0

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00
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36 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00

37 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00

38 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00

39 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00

40 0.00000E+00 0.00000E+00 0.00000E+00
.00000E+00 0.00000E+00 0.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+0O0

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00

.00000E+00
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C. CALREL INPUT FILE

CALRel nrx=

DATA
TITL nline
1

20 ntp=1

title

Example 1 -- Pure tension test.
FLAG icl,igr

10

OPTI iop,nil,ni2,tol,opl,op2,op3

1,50,4,0.05

STAT igt(i),nge,ngm nv,ids,ex,sqg,p3,p4, x0

1 20
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12

O IO U WNEFE OWOWJo) U WM

X
N
N
PR R R RER PR
eNeoNoNolcNololoNoNoloNoNoNoNoNoloNoNeoNe)
e e TS

END
FORM ini=1
SENS isc=1
EXIT

.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5
.1,0.0,0.0,0.5

.1,0.0,0.0,0.5

O U O UTO UTO U1LO U1O U O o oo oo ul

N N N N N N N N N SN NS S S SN SN NS S S N~ o~

oNoNoloNoloNoloNoloNolololoNoNolNoloNoNe)

isv=1

.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.
.0873,0.0,0.0,0.

.0873,0.0,0.0,0.

0

0

0

-- input.txt
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OO O oo

LOOK-UP TABLE FOR DIFFERENT VOLUME RATIOS

.4750E+06
.5100E+06
.6560E+06
.7470E+06
.8100E+06

OO O oo

.1630E+06
.1960E+06
.1910E+06
.1890E+06
.1850E+06

[oNoNoNoN®]

-- table.txt
.3990E+00 0.5300E+00
.3970E+00 0.5310E+00
.3970E+00 0.5130E+00
.3990E+00 0.5090E+00
.4020E+00 0.4940E+00

[oNoNoNoNe]

.7400E+05
.7400E+05
.7420E+05
.7460E+05
.7620E+05
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E. MAKE-FILE FOR CALREL-FEMCOD IN MS FORTRAN 5.1

-- fll.bat

f1 /F 10000 /c /AH /G2 /Ot /Foadstif.obj adstif.for

f1 /F 10000 /c /AH /G2 /Ot /Foaxis.obj axis.for

f1 /F 10000 /c /AH /G2 /Ot /Foaxistr.obj axistr.for

f1 /F 10000 /c /AH /G2 /Ot /Fofemcod.obj femcod.for

f1 /F 10000 /c /AH /G2 /Ot /Fofindb.obj findb.for

f1 /F 10000 /c /AH /G2 /Ot /Fouserl.obj userl.for

link /SEG:200 boun core data dirs form lib main mont pnet senc sens sorm
user femcod axis axistr findb adstif



F. CALREL-FEMCOD OUTPUT FILE

-- output.txt

kA hkhkhkhkhk Ak kA hhkh kA hhkhkhhkrhhkhkhhkhhhkhhkhkhkhkrhkhkhkhhkhhkrhhkrhkhkrkxhkhkkxhkxk*k

* University o f California
* Department of Civil Engineering

*

* cC A L R E L

* CAL-RELiability program

* Developed by

* P.-L. Liu, H.-Z. Lin and A. Der Kiureghian

*

* Last Revision: December 1990

* Copyright @ 1989

ok hkhkhkhkhkhhkhhhkhkhhkhkhkhhhkhkr kb hkhhkhkrhkhhkhkhkhkhkrhkhhkhkhkkhkhkhkhkrhkhkrhhhkhxkhx

>>>> NEW PROBLEM <<<<

number of limit-state functions.......... ngf= 1
number of independent variable groups ...nig= 1
total number of random variables ........ nrx= 20
number of limit-state parameters ........ ntp= 1

>>>> INPUT DATA <<<<

Example 1 -- Pure tension test.
type of system ....... ittt icl= 1
o component
1Cl=2 e series system
1C1=3 i e e e e e general system
flag for gradient computation ........... igr= 0
1gr=0 it e finite difference
1gr=1 ... formulas provided by user
optimization scheme used ................ iop= 1
10P=l e e e HL-RF method
1op=2 .. e modified HL-RF method
1o0p=3 . e gradient projection method
iop=4 ... sequential quadratic method
maximum number of iteration cycles ...... nil= 50
maximum steps in line search ............ niz= 4
convergence tolerance ................ tol= 5.000E-02
optimization parameter 1 ............. opl= 1.000E+00
optimization parameter 2 ............. op2= 0.000E+00
optimization parameter 3 ............. op3= 0.000E+00

statistical data of basic varibles:
available probability distributions:

determinitic ............. 1ds=0
normal .......iiiiiiiia.. ids=1
lognormal .........c..c0... ids=2
JAMME e e e et e e e e e e eaaeenas ids=3
shifted exponential ...... ids=4
shifted rayleigh ......... ids=5
uniform ......... ... 0., ids=6
beta .l i ids=7
type i largest value ..... ids=11
type 1 smallest value ....ids=12
type ii largest value ....ids=13
weibull ......... ... ... ids=14

user defined ............. ids>50

*
*
*
*
*
*
*
*
*
*
*
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paramé

sensitivity vectors
delta

.0008
.0085
.0008
.0085
.0014
.0269
.0014
.0269
.0041
.0824
.0041
.0824
.0081
.2350
.0081
.2350
.0209

113

init. pt
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00
.00E-01
.00E+00

OQUIOUTOUTOUTO UTO UTO U1O Ulo Ul o ul

eta

.0000
.0000
.0000
.0000
.0000
.0005
.0000
.0005
.0000
.0044
.0000
.0044
.0000
.0360
.0000
.0360
.0003

group no.: 1 group type: 1
var ids mean st. dev. paraml param? param3
x1 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x2 1 0.00E+00 8.73E-02 O0.00E+00 8.73E-02
%3 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x4 1 0.00E+00 8.73E-02 0.00E+00 8.73E-02
x5 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x6 1 0.00E+00 8.73E-02 O0.00E+00 8.73E-02
x7 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x8 1 0.00E+00 8.73E-02 0.00E+00 8.73E-02
x9 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x10 1 0.00E+00 8.73E-02 O0.00E+00 8.73E-02
x11 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x12 1 0.00E+00 8.73E-02 0.00E+00 8.73E-02
x13 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x14 1 0.00E+00 8.73E-02 O0.00E+00 8.73E-02
x15 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x16 1 0.00E+00 8.73E-02 0.00E+00 8.73E-02
x17 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x18 1 0.00E+00 8.73E-02 O0.00E+00 8.73E-02
x19 1 5.00E-01 1.00E-01 5.00E-01 1.00E-01
x20 1 0.00E+00 8.73E-02 0.00E+00 8.73E-02
deterministic parameters in limit-state function:
tp (1) = 1.200E+04
>>>> FIRST-ORDER RELIABILITY ANALYSIS <<<<
print interval . ...ttt e npr= 0
npr<0 .......... no first order results are printed
npr=0 ........ print the final step of FORM results
npr>0 ........ print the results of every npr steps
initialization flag .....iiiieeeennnnn. ini= 1
Ini=0 ... e e e start from mean point
ini=1 .......... start from point specified by user
ini=-1 ....start from previous linearization point
restart flag .....ei ittt ist= 0
1st=0 ‘it e e e analyze a new problem
ist=1 ... continue an unconverged problem
limit-state function 1
iteration number .............. iter= 5
value of limit-state function..g(x)= 2.221E-05
reliability index ............. beta= .6527
probability .......c.iiiiiiii.. Pfl= 2.570E-01
var design point
X* u* alpha gamma
x1 5.000E-01 4.951E-04 .0008 .0008
x2 4.851E-04 5.557E-03 .0085 .0085
%3 5.000E-01 4.951E-04 .0008 .0008
x4 -4.851E-04 -5.557E-03 -.0085 .0085
x5 5.001E-01 9.210E-04 .0014 .0014
x6 1.535E-03 1.759E-02 .0269 .0269
x7 5.001E-01 9.210E-04 .0014 .0014
%8 -1.535E-03 -1.759E-02 -.0269 .0269
x9 5.003E-01 2.661E-03 .0041 .0041
x10 4.693E-03 5.375E-02 .0824 .0824
x11 5.003E-01 2.661E-03 .0041 .0041
x12 -4.693E-03 -5.375E-02 -.0824 .0824
x13 5.005E-01 5.322E-03 .0081 .0081
x14 1.339E-02 1.534E-01 .2350 .2350
x15 5.005E-01 5.322E-03 .0081 .0081
x16 -1.339E-02 -1.534E-01 -.2350 .2350
x17 5.014E-01 1.368E-02 .0209 .0209
x18 3.765E-02 4.313E-01 .6608 .6608

.6608

.2850



x19 5.014E-01 1.368E-02 .0209 .0209 -.0209
x20 -3.765E-02 -4.313E-01 -.6608 -.6608 .6608

>>>> SENSITIVITY ANALYSIS AT COMPONENT LEVEL <<<<

type of parameters for sensitivity analysis

.......................................... isv= 1
I distribution parameters
1SV=2 i e limit-state fcn parameters
isv=0 ..distribution and limit-state fcn parameters

sensitivity with respect to distribution parameters

limit-state function 1

d(beta) /d (parameter)

var mean std dev par 1 par 2 par 3 par 4
x1 -7.586E-03 -3.756E-06 -7.586E-03 -3.756E-06
x2 -9.753E-02 -5.419E-04 -9.753E-02 -5.419E-04
x3 -7.586E-03 -3.756E-06 -7.586E-03 -3.756E-06
x4 9.753E-02 -5.419E-04 9.753E-02 -5.419E-04
x5 -1.411E-02 -1.300E-05 -1.411E-02 -1.300E-05
x6 -3.087E-01 -5.428E-03 -3.087E-01 -5.428E-03
x7 -1.411E-02 -1.300E-05 -1.411E-02 -1.300E-05
x8 3.087E-01 -5.428E-03 3.087E-01 -5.428E-03
%9 -4.078E-02 -1.085E-04 -4.078E-02 -1.085E-04

x10 -9.434E-01 -5.071E-02 -9.434E-01 -5.071E-02
x11 -4.078E-02 -1.085E-04 -4.078E-02 -1.085E-04
x12 9.434E-01 -5.071E-02 9.434E-01 -5.071E-02
x13 -8.144E-02 -4.334E-04 -8.144E-02 -4.334E-04
x14 -2.692E+00 -4.128E-01 -2.692E+00 -4.128E-01
x15 -8.144E-02 -4.334E-04 -8.144E-02 -4.334E-04
x16 2.692E+00 -4.128E-01 2.692E+00 -4.128E-01
x17 -2.095E-01 -2.866E-03 -2.095E-01 -2.866E-03
x18 -7.570E+00 -3.265E+00 -7.570E+00 -3.265E+00
x19 -2.095E-01 -2.866E-03 -2.095E-01 -2.866E-03
x20 7.570E+00 -3.265E+00 7.570E+00 -3.265E+00

d(Pfl) /d(parameter)

var mean std dev par 1 par 2 par 3 par 4
x1 2.446E-03 1.211E-06 2.446E-03 1.211E-06
%2 3.144E-02 1.747E-04 3.144E-02 1.747E-04
x3 2.446E-03 1.211E-06 2.446E-03 1.211E-06
x4 -3.144E-02 1.747E-04 -3.144E-02 1.747E-04
x5 4.550E-03 4.191E-06 4.550E-03 4.191E-06
X6 9.951E-02 1.750E-03 9.951E-02 1.750E-03
x7 4.550E-03 4.191E-06 4.550E-03 4.191E-06
x8 -9.951E-02 1.750E-03 -9.951E-02 1.750E-03
x9 1.315E-02 3.499E-05 1.315E-02 3.499E-05
%10 3.042E-01 1.635E-02 3.042E-01 1.635E-02
x11 1.315E-02 3.499E-05 1.315E-02 3.499E-05
x12 -3.042E-01 1.635E-02 -3.042E-01 1.635E-02
x13 2.626E-02 1.397E-04 2.626E-02 1.397E-04
x14 8.678E-01 1.331E-01 8.678E-01 1.331E-01
x15 2.626E-02 1.397E-04 2.626E-02 1.397E-04
x16 -8.678E-01 1.331E-01 -8.678E-01 1.331E-01
x17 6.754E-02 9.242E-04 6.754E-02 9.242E-04
%18 2.440E+00 1.053E+00 2.440E+00 1.053E+00
x19 6.754E-02 9.242E-04 6.754E-02 9.242E-04
x20 -2.440E+00 1.053E+00 -2.440E+00 1.053E+00

Stop - Program terminated.
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G. ABAQUS MODEL INPUT FILES FOR 50% VOLUME RATIO

*HEADING
ABAQUS job created on 16-Feb-:0 at 03:01:47
* %

*RESTART,

* %

*NODE

OO ~Jo Ul WN K
NS N S S S S S N

WRITE,

OO O OO oo

FREQUENCY=1

oNeoNolololoNoloNoloNoloNoloNoloNoloNohololoNololololoNolNoNololoNoNoNoNoNoNeNoNe]
L T T T T T T S Y

(@)

.143333
.143333
.143333
.143333
.143333
.143333
.143333

N N N N N N N N N N N N N N N N N NS N N N N NS NS NS N N NS NS NS N N NS NS NS N N NS NS

4
4
4
4
14
14

4

4

-- long.inp and trans.inp

1.4
1.615
1.83
2.045
2.26
2.475
2.69
2.905
3.12
3.335
3.55
3.765
3.98
4.195
4.41
4.625
4.84
5.055
5.27
5.485
5.7
5.915
6.13
6.345
6.56
6.775
6.99
7.205
7.42
7.635
7.85
8.065
8.28
8.495
8.71
8.925
9.14
9.355
9.57
9.785
10.
1.4
.83
.26
.69
.12
.55
.98

W wwhN
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eloNooloNoloNoNoNololNoNolNoNoNoloNololNoloNolololoNoNololoNoNoloNoNoNololoNoNololNoloNololoRoNoloNoloNoNolNoNoNe]

O O O o

.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.143333,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,
.286667,

0.
.43,
.43,
.43,
.43,

43,

4.41
4.84
5.27
5.7
.13
.56
.99
.42
.85
.28
.71
.14
.57
10.
1.4
1.615
1.83
2.045
2.26
2.475
2.69
2.905
3.12
3.335
3.55
3.765
3.98
4.195
4.41
4.625
4.84
5.055
5.27
5.485
5.7
5.915
6.13
6.345
6.56
6.775
6.99
7.205
7.42
7.635
7.85
8.065
8.28
8.495
8.71
8.925
9.14
9.355
9.57
9.785
10.
1.4
1.83
2.26
2.69
3.12

O W00 ~J~Joy oy o
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1009,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,

oNoNoloNoloNoloNoloNoloNoloNoloNololoNololoNoNololoNoNoloNoNoNolNoNoNoNololNoloNoNolNeoloNe]

oNoNoloNoNoNoloNoRoNololeoloNe]
ISy
w
~

0.43,

.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.573333,
.716667,
.716667,
.716667,

.55
.98
.41
.84
.27
5.7
.13
.56
.99
.42
.85
.28
.71
.14
.57
10.
1.4
1.615
1.83
2.045
2.26
2.475
2.69
2.905
3.12
3.335
3.55
3.765
3.98
4.195
4.41
4.625
4.84
5.055
5.27
5.485
5.7
5.915
6.13
6.345
6.56
6.775
6.99
7.205
7.42
7.635
7.85
8.065
8.28
8.495
8.71
8.925
9.14
9.355
9.57
9.785
10.
1.4
1.83
2.26

O b ww

O O 00 J~Jo0)oy O
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169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,

eloNohoNoloNohoNoNololoNoNoloNoNoNe)

oNoNoloNoRoNoloNoRoNoloNoloNololNololoNololNoNoNolololoNoloNololNololNoloNolNololoNeoNe)

.716667,
716667,
.716667,
.716667,
.716667,
716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,
.716667,

0.
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,
.86,

86,

.69
.12
.55
.98
.41
.84
.27
5.7
.13
.56
.99
.42
.85
.28
.71
.14
.57
10.
1.4
1.615
1.83
2.045
2.26
2.475
2.69
2.905
3.12
3.335
3.55
3.765
3.98
4.195
4.41
4.625
4.84
5.055
5.27
5.485
5.7
5.915
6.13
6.345
6.56
6.775
6.99
7.205
7.42
7.635
7.85
8.065
8.28
8.495
8.71
8.925
9.14
9.355
9.57
9.785
10.
1.4

g D wwwN

O W0 W~J~Joy oy o
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229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268,
269,
270,
271,
272,
273,
274,
275,
276,
2717,
278,
279,
280,
281,
282,
283,
284,
285,
286,
287,
288,

cloNooNoloNoRoNololNoloNolololoNololeoNoNe]
E T T T Y

HFRPRPRPRERRRPRRRRRRRERRRRRRRRRRRPRRRERRRRRRRRRERRE

1.4
.83
.26
.69
.12
.55
.98
.41
.84
.27
5.7
.13
.56
.99
.42
.85
.28
.71
.14
.57
10.
1.4
1.615
1.83
2.045
2.26
2.475
2.69
2.905
3.12
3.335
3.55
3.765
3.98
4.195
4.41
4.625
4.84
5.055
5.27
5.485
5.7
5.915
6.13
6.345
6.56
6.775
6.99
7.205
7.42
7.635
7.85
8.065
8.28
8.495
8.71
8.925
9.14
9.355
9.57

O D wWwwwh N -

NelNeRne oo oRENEEN B ) W) N0
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289,
290,
291,
292,
293,
294,
295,
296,
297,
298,
299,
300,
301,
302,
303,
304,
305,
306,
307,
308,
309,
310,
311,
312,
313,
314,
315,
316,
317,
318,
319,
320,
321,
322,
323,
324,
325,
326,
327,
328,
329,
330,
331,
332,
333,
334,
335,
336,
337,
338,
339,
340,
341,
342,
343,
344,
345,
346,
347,
348,

oNoNoloNoloNoloNoNoNoNe]

eloNoholololNoloNoloNeoNo)

oNeoNoloNoNoNoloNoRoNolNoNe]
E T
00
(o))

oOoococococoocoorHFPFRERPrRFRERERERE
L T T T R

(@)

.143333
.143333
.143333
.143333
.286667
.286667
.286667
.286667
.286667
.286667
.286667
.286667

0.43
0.43
0.43
0.43

.573333
.573333
.573333
.573333
.573333
.573333
.573333
.573333
.716667
.716667
.716667
.716667

0.86

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
14
4
4
4
14
4
4
4

4

9.785
10.

0.175
0.35
0.525
0.7
0.875
1.05
1.225
1.4

0.35
0.7
1.05

0.175
0.35
0.525
0.7
0.875
1.05
1.225

0.175
0.35
0.525
0.7
0.875
1.05
1.225

0.35
0.7
1.05

0.175
0.35
0.525
0.7
0.875
1.05
1.225

0.35
0.7
1.05

0.175
0.35
0.525
0.7
0.875
1.05
1.225

0.35
0.7
1.05
1.4
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* x
* %

*ELEMENT,
1,

43,

2,

44,

3,

45,

112,

TYPE=CAXS,

ELSET=PARTICLE

63,
65,
67,
69,
71,
73,
75,
77,
79,
81,
83,
85,
87,
89,
91,
93,
95,
97,
99,
101,
125,
127,
129,
131,
133,
135,
137,
139,

141,

65,
67,
69,
71,
73,
75,
77,
79,
81,
83,
85,
87,
89,
91,
93,
95,
97,
99,
101,
103,
127,
129,
131,
133,
135,
137,
139,
141,

143,

42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
104,
105,
106,
107,
108,
109,
110,
111,

112,

64,
66,
68,
70,
72,
74,
76,
78,
80,
82,
84,
86,
88,
90,
92,
94,
96,
98,
100,
102,
126,
128,
130,
132,
134,
136,
138,
140,

142,

121



113,
30,
114,

115,
32,
116,
33,
117,
34,
118,

119,

121,

172,

173,
48,
174,

175,
50,
176,
51,
177,
52,
178,
53,
179,
54,
180,

181,
56,
182,
57,
183,
58,
184,
59,

143,
145,
147,
149,
151,
153,
155,
157,
159,
161,
163,
187,
189,
191,
193,
195,
197,
199,
201,
203,
205,
207,
209,
211,
213,
215,
217,
219,
221,

223,

145,
147,
149,
151,
153,
155,
157,
159,
le1l,
163,
165,
189,
191,
193,
195,
197,
199,
201,
203,
205,
207,
209,
211,
213,
215,
217,
219,
221,
223,

225,

83,
85,
87,
89,
91,
93,
95,
97,
99,
101,
103,
127,
129,
131,
133,
135,
137,
139,
141,
143,
145,
147,
149,
151,
153,
155,
157,
159,
161,

163,

113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,

184,

144,
l46,
148,
150,
152,
154,
156,
158,
160,
162,
164,
188,
190,
192,
194,
196,
198,
200,
202,
204,
206,
208,
210,
212,
214,
216,
218,
220,
222,

224,

122



185,
60,
186,
*ELEMENT,
61,
230,
62,
231,
63,
232,
64,
233,
65,
234,
66,
235,
67,
236,

162
163,
164

TYPE=CAXS,

228,
188
189,
190
191,
192
193,
194
195,
196
197,
198
199,
200
201,
202
203,
204
205,
206
207,
208
209,
210
211,
212
213,
214
215,
216
217,
218
219,
220
221,
222
223,
224
225,
226
291,
292
293,
294
295,
296
297,
298
312,
313
314,
315
316,
317
318,
319

225, 227,
ELSET=MATRIX
250, 252,
252, 254,
254, 256,
256, 258,
258, 260,
260, 262,
262, 264,
264, 266,
266, 268,
268, 270,
270, 272,
272, 274,
274, 276,
276, 278,
278, 280,
280, 282,
282, 284,
284, 286,
286, 288,
288, 290,
304, 306,
306, 308,
308, 310,
310, 250,
324, 326,
326, 328,
328, 330,
330, 63,

165,

189,
191,
193,
195,
197,
199,
201,
203,
205,
207,
209,
211,
213,
215,
217,
219,
221,
223,
225,
227,
293,
295,
297,
299,
314,
316,

318,

185,

229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
300,
301,
302,
303,
320,
321,
322,

323,

226,

251,
253,
255,
257,
259,
261,
263,
265,
267,
269,
271,
273,
275,
277,
279,
281,
283,
285,
287,
289,
305,
307,
309,
311,
325,
327,
329,

331,

123



89, 324, 336, 338, 326, 332, 337,
333, 325

90, 326, 338, 340, 328, 333, 339,
334, 327

91, 328, 340, 342, 330, 334, 341,
335, 329

92, 330, 342, 125, 63, 335, 343,
104, 331

93, 336, 291, 293, 338, 344, 292,
345, 337

94, 338, 293, 295, 340, 345, 294,
346, 339

95, 340, 295, 297, 342, 346, 296,
347, 341

96, 342, 297, 348, 125, 347, 298,
166, 343

* x

** matrix
* %

*ORIENTATION, SYSTEM=R, NAME=0OID1

0., 1., 0., -1., 0.,
0.
1, 0.
*SOLID SECTION, ELSET=MATRIX, MATERIAL=PLASTIC, ORIENTATION=OID1
1.,

* *

** particle

* *

*SOLID SECTION, ELSET=PARTICLE, MATERIAL=WOOD, ORIENTATION=0ID1
1.,

* *

** plastic

** Date: 16-Feb-:0 Time: 02:57:54

* %

*MATERIAL, NAME=PLASTIC

* x

*ELASTIC, TYPE=ISO

200000., 0.4
* %
** wood
** Date: 16-Feb-:0 Time: 02:57:54

* %

*MATERIAL, NAME=WOOD

* Kk

*ELASTIC, TYPE=ENGINEERING CONSTANTS

124

1.6+46 1.645 1.6+45 0.4 0.4 0.4 80000.

80000.
16000.
* x
** Step 1, stepl
** LoadCase, uniform disp
* k

*STEP, AMPLITUDE=RAMP, PERTURBATION

* %
*STATIC
* %
* %
* %

** axis top
* x



*BOUNDARY, OP=NEW

290,

* x

** uniform disp

* %

*BOUNDARY, OP=NEW

291,
300,
304,
312,
312,
320,
324,
332,
336,
344,

* *

** axis left

* x

*BOUNDARY, OP=NEW

DNDNNDNDNDNDDNDDN R

NDNDDNDNDDNDNDEDNDDNDDN

HFRPRPRPRRPRRRPRPRRRRPRRRRRPRPRRRRRRRERRRRRRRE R

N N N N N N N N N N N N NS NS N N NS S S NS NS NS S S NS N NSNS s s

N N N N SN SN SN SN N O~

N N SN SN SN N SN SN SN~

N N N N N SN SN SN N O~

N N SN SN N N N SN S~ O~

N N N N N N N N N N N NS NS NS N N NS S S SN NS NS S S NS N NSNS s s

oNoNoloNoNoNololNoNe]
L T T T Y

.001
.001
.001

.001
.001
.001
.001
.001
.001

cNeoNoloNoloNoloNoRoNoloNoloNoloNoloNolololoNololololNoNolNeolNoNe]
L T T T T Y
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* x

318,
319,

FRRPRPRRRRPRRERERRR R BR

N~ N SN N N~ O~
~N SN SN N N O~

~
~

N N N N N N~
N N N N N N~ N

~
~
cNoNoBoNoNoNoNoNoNoNoNoloNoNoNe]

~
~

*CLOAD, OP=NEW
*DLOAD, OP=NEW
*TEMPERATURE, OP=NEW

* x

*NODE PRINT, FREQ=1

U,
RF,

*NODE FILE,

U,
RF,
* %

*EL

* %

*EL
* %

*EL
* %

*EL
* %

*EL
* %

*EL
* %

*EL
* %

PRINT,

FILE,

PRINT,
FILE,
PRINT,
FILE,
PRINT,

FILE,

FREQ=1

POS=INTEG, FREQ=1

POS=INTEG, FREQ=1

POS=NODES, FREQ=0
POS=NODES, FREQ=0
POS=CENTR, FREQ=0
POS=CENTR, FREQ=0
POS=AVERAGE, FREQ=0

POS=AVERAGE, FREQ=0

*MODAL PRINT, FREQ=99999

* x

*MODAL FILE, FREQ=99999

* %

*ENERGY PRINT, FREQ=0

* x

*ENERGY FILE, FREQ=0

* %

*PRINT,

* x

*END STEP

FREQ=1
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127

*HEADING
ABAQUS job created on 15-Feb-:0 at 11:45:54

* x

*RESTART, WRITE, FREQUENCY=1

* x

*NODE

1, 0., 0.
2, 0.04, 0.
3, 0.08, 0.
4, 0.12, 0.
5, 0.1le6, 0.
6, 0.2, 0.
7, 0.24, 0.
8, 0.28, 0.
9, 0.32, 0.
10, 0.36, 0.
11, 0.4, 0.
12, 0., 0.04
13, 0.08, 0.04
14, 0.1l6, 0.04
15, 0.24, 0.04
le, 0.32, 0.04
17, 0.4, 0.04
18, 0., 0.08
19, 0.04, 0.08
20, 0.08, 0.08
21, 0.12, 0.08
22, 0.1le6, 0.08
23, 0.2, 0.08
24, 0.24, 0.08
25, 0.28, 0.08
26, 0.32, 0.08
27, 0.36, 0.08
28, 0.4, 0.08
29, 0., 0.12
30, 0.08, 0.12
31, 0.16, 0.12
32, 0.24, 0.12
33, 0.32, 0.12
34, 0.4, 0.12
35, 0., 0.16
36, 0.04, 0.16
37, 0.08, 0.16
38, 0.12, 0.16
39, 0.16, 0.16
40, 0.2, 0.16
41, 0.24, 0.16
42, 0.28, 0.16
43, 0.32, 0.16
44, 0.36, 0.16
45, 0.4, 0.16
46, 0., 0.2
47, 0.08, 0.2
48, 0.16, 0.2
49, 0.24, 0.2
50, 0.32, 0.2
51, 0.4, 0.2
52, 0., 0.24
53, 0.04, 0.24
54, 0.08, 0.24



0.12,
0.16,

0.24,
0.28,
0.32,
0.36,

0.4,

0.08,
0.1le6,
0.24,
0.32,

oo oo
=
&)
N

0.36,
0.4,
0.420811,
0.429575,
0.436626,
0.44179,
0.444941,
0.44¢,
0.441622,
0.450824,
0.45915,
0.46668,
0.473251,
0.478925,
0.48358,
0.487246,
0.489881,
0.49147,
0.492,
0.462434,

WNNDNDMNDMNDNDNDNDDNDDNDDNDDNDDNDDND
N OO CO CO CO 00 QO W W I I B b DD

WWWWwWwWwWwWwwwwwwww
Ao NDNNNNNDNDDNDNDN

cNoNoloNoNoNoNoNoNoNoloRoloNoNoNoNoNoNoNoloNololoNoNoNoNoNoNe]
w w
[e)} N

oloNoNoNoNoNoNolNe NN
e e e e e e e e w
(o))

IS

B DD DD DD

0.4
0.420811
0.33855
0.255045
0.170578
0.0854568
-1.87959E-9
0.441622
0.39954
0.357101
0.313702
0.27009
0.225653
0.181157
0.136159
0.0909138
0.0454992
-3.75918E-9
0.462434
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115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
l4e,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,

0.
0.

0.
0.
0.
0.

0.

0.
0.

0

0.
0.
0.

0.

0.
0.

0.
0.
0.

0.
0.
0.

0.
0.

0.

0.
0.
0.
0.
0.

0.
0.
0.

(@)

O O O o

488725, 0.375651
509877, 0.285135
0.52537, 0.191735
534822, 0.0963708
0.538, -5.63877E-9
483245, 0.483245
501648, 0.439237
0.5183, 0.394201
0.53336, 0.347561
546503, 0.30018
557851, 0.251461
0.56716, 0.202313
574517, 0.152123
579763, 0.101828
.582939, 0.0509987
0.584, -7.51836E-9
504056, 0.504056
547875, 0.412751
583128, 0.315225
0.60895, 0.212891
624703, 0.107285
0.63, -9.39795E-9
524867, 0.524867
552471, 0.478934
0.57745, 0.431302
600041, 0.381419
619754, 0.33027
636776, 0.27727
0.65074, 0.22347
661738, 0.168479
669644, 0.112742
674408, 0.0564983
0.676, -1.12775E-8
545678, 0.545678
607025, 0.449852
0.65638, 0.345315
0.69253, 0.234048
714585, 0.1182
0.722, -1.31571E-8
0.56649, 0.56649
603295, 0.518631
636599, 0.468403
666721, 0.415278
693005, 0.360359
715621, 0.303305
0.73432, 0.244626
748984, 0.184639
759525, 0.123657
765878, 0.061998
0.768, -1.50367E-8
.587301, 0.587301
.666174, 0.486953
.729631, 0.375404
0.77611, 0.255204
.804465, 0.129115
0.814, -1.69163E-8
.608112, 0.608112
.653947, 0.558528
.695749, 0.505503
.733263, 0.449361
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175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,

0.766257,
0.794527,
0.8179,
0.83623,
0.849406,
0.857347,
0.86,

0.,
0.0854525,
0.170574,
0.255041,
0.338547,
0.,
0.0454944,
0.090905,
0.13615,
.181147,
.225643,
.270081,
.313694,
.357093,
.399537,
0.,
0.0963574,
0.191721,
0.285122,
0.37564,
0.,
0.0509887,
0.10181,
.152103,
.202294,
.251442,
.300162,
.347544,
.394186,
.439229,
0.,
.107262,
.212868,
.315203,
.412732,
0.,
.056483,
.112715,
.168449,
.223442,
.277242,
.330243,
.381393,
.431279,
.478922,
0.,
.118167,
.234015,
.345284,
.449825,
0.,
0.0619773,
0.123619,

OO OO oo

oNoNoloNoNoNoloNe] O O OO cloNoRoNoloNe]

O O OO

[cNeololoRoNoNe]

.390449
.329131
.265782
.200799
.134572
.067498
7959E-8
0.446
.444941
.441792
.436628
.429577
0.492
0.49147
0.489883
0.487248
0.483583
0.47893
.473256
.466685
.459154
.450827
0.538
.534824
.525375
.509884
.488732
0.584
0.58294
0.579765
0.574521
0.567166
0.557859
0.546512
0.53337
0.518309
0.501653
0.63
0.624707
0.608957
0.58314
0.547887
0.676
0.67441
.669648
.661745
.650749
.636788
.619768
.600056
.577465
.552481
0.722
.714589
0.69254
0.656395
0.607043
0.768
0.765879
0.759531

[cNoNoNe]

[oNoNeoNe)

ecNoNoNe]

cNoNololoNoNoNe]

o
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235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268,
269,
270,
271,
272,
273,
274,
275,
276,
2717,
278,
279,
280,
281,
282,
283,
284,
285,
286,
287,
288,
289,
290,
291,
292,
293,
294,

OO O OO Ooo

O O O o

.184599,
.244589,
.303267,
.360324,
.415243,
.468371,
.518614,

0

.
.129072,
.255162,
.375365,
.486918,

0

0.0674715,

oNeoNoloNoNoNoloNoRolNoNoNe]

o O

eoNoNoloNoNolNolNoNoNe) O O O o oloNoloNeoNe)

O O O o

.134524,
.200749,
.265736,
.329084,
.390406,
.449318,
.505464,
.558508,
.657098,
.733777,
.795467,
.840655,
.868227,

0.8775,

.706084,
.740588,
0.77181,
.800047,
.824687,
.845965,
.863419,
.877169,
.887052,
0.89301,

0.895,

0.75507,
.809842,
.853907,
.886183,
.905877,

0.9125,

.804056,
.827059,
.847874,
.866699,
.883126,
.897311,
.908947,
.918144,
.924702,
.928673,

0.93,

.853042,
.885906,
.912345,
.931711,

. 748993
.734332
.715637
.693023
.666742
.636621
.603308

0.814
.804472
776123
.729651
.666199

0.86
.857349
.849414
.836241
.817915
.794546
.766279
0.73329
.695778
.653964
.608112
.503132
.387268
.262991
.132977
4464E-8
.608112
.555513
.500754
.443221
.384068
.322638
0.26017

0.196229

0.131355

0.0658364
-1.40969E-8

0.608112

0.498377

0.380868

0.257349

0.129732
-1.17474E-8

0.608112
.552697
.495999
.437295
.377668
.316365
.254528
.191383
0.12811

0.0641611
-9.39795E-9

0.608112

0.493622

0.374468

0.251707

[cNoNoNe] cNoNoloRoNoNe]

ocNoNoloNoNe]
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295,
296,
297,
298,
299,
300,
301,
302,
303,
304,
305,
306,
307,
308,
309,
310,
311,
312,
313,
314,
315,
316,
317,
318,
319,
320,
321,
322,
323,
324,
325,
326,
327,
328,
329,
330,
331,
332,
333,
334,
335,
336,
337,
338,
339,
340,
341,
342,
343,
344,
345,
346,
347,
348,
349,
350,
351,
352,
353,
354,

0.943527,
0.9475,
0.902028,
0.91353,
0.923937,
0.93335,
.941563,
.948656,
.954474,
.959057,
.962352,
.964337,
0.965,
.951014,
.961969,
.970782,
.977237,
.981176,
0.9825,
1.,

OO OO oo

OO O oo
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.132905,

.262907,

.387189,

.503072,

.608112,
0

oNoNeoRoNe]

0.0658039,

0.131294,
0.19616,
0.260098,
0.322567,
0.384,
0.44316,
0.500703,
.555488,
.608112,
0.,
.129682,
.257289,
.380811,
.498334,
.608112,
0.,

[®Ne]

[oNoNeoRoNe]

0.0641397,

0.12807,
.191338,
.254481,
.316317,
.377622,

O O O o

0.126488
.04846E-9
0.608112
0.54988
.491245
.431368
.371267
.310092
.248886
.187032
.124866
.062486
.69897E-9
0.608112
0.488867
0.368067
0.246066
0.123244
.34949E-9
0.608112
0.547301
0.48649
.425678
.364867
.304056
.243245
.182434
.121622
0.0608112
0.

0.8775
0.868238
0.84068
0.795505
0.733817
0.657098
0.895
.893012
.887061
.877183
0.86344
.845991
.824717
.800079
.771841
. 740606
.706084
0.9125
.905884
0.886199
0.85393
0.809866
0.75507
0.93
.928675
.924707
.918152
.908959
.897326
.883143

cNoNololoNoNoNe]

cNoNoNoNeNe]

[eoNeoNe]

ocNoNoloNoNe]

(@}

cNoNoNoNoNe]
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355, 0.437254,
356, 0.495964,
357, 0.552679,
358, 0.608112,
359, 0.,
360, 0.126458,
361, 0.251672,
362, 0.374434,
363, 0.493596,
364, 0.608112,
365, 0.,
366, 0.0624755,
367, 0.124846,
368, 0.187009,
369, 0.248863,
370, 0.310068,
371, 0.371245,
372, 0.431347,
373, 0.491227,
374, 0.549871,
375, 0.608112,
376, 0.,
377, 0.123234,
378, 0.246054,
379, 0.368056,
380, 0.488858,
381, 0.608112,
382, 0.,
383, 0.0608112,
384, 0.121622,
385, 0.182434,
386, 0.243245,
387, 0.304056,
388, 0.364867,
389, 0.425678,
390, 0.48649,
391, 0.547301,
392, 0.608112,
393, 0.706084,
394, 0.804056,
395, 0.902028,
396, 1.,
397, 0.657098,
398, 0.706084,
399, 0.75507,
400, 0.804056,
401, 0.853042,
402, 0.902028,
403, 0.951014,
404, 1.,
405, 0.706084,
406, 0.804056,
407, 0.902028,
408, 1.,
4009, 0.657098,
410, 0.706084,
411, 0.75507,
412, 0.804056,
413, 0.853042,
414, 0.902028,

.866717
.847891
.827069
.804056
0.9475
0.94353
.931719
.912357
.885917
.853042
0.965
.964337
.962353
.959061
.954479
.948663
.941571
.933357
.923944
.913534
.902028
0.9825
.981177
.977239
.970785
.961972
.951014
1.

oNoNoNoNe] cNoNoNoNoloNoNoNeNe) [oNoNeoNe) [cNeoNoNe]
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1.
.657098
.657098
.657098
.657098
.706084
.706084
.706084
.706084
.706084
.706084
.706084
.706084
0.75507
0.75507
0.75507
0.75507
.804056
.804056
.804056
.804056
.804056
.804056

[cNoNoNoRololNolNoNoNoNoNe]

cNoNoNoNoNe]
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415,
416,
417,
418,
419,
420,
421,
422,
423,
424,
425,
426,
427,
428,
429,
430,
431,
432,
433,
434,
435,
436,
437,
438,
439,
440,

* %
* x

*ELEMENT,
1,
19,
2,
21,
3,
23,
4,
25,
5,
27,
6,
36,
7,
38,
8,
40,
9,
42,
10,
44,
11,
53,
12,
55,
13,
57,
14,
59,
15,
61,
16,

0.951014,
1.,
0.706084,
0.804056,
0.902028,
1.,
0.657098,
.706084,
0.75507,
.804056,
.853042,
.902028,
.951014,
1.,
.706084,
0.804056,
0.902028,
1.,
0.657098,
0.706084,
0.75507,
0.804056,
0.853042,
0.902028,
0.951014,
1.,

O O OO (@)

(@)

locNoNoNoBoRololoNoNoNoNoNoNolNoNoNoNe]

TYPE=CPE8, ELSET=PARTICLE

1,
12
3,
13
Sy
14
7y
15
9,
16
18,
29
20,
30
22,
31
24,
32
26,
33
35,
46
37,
47
39,
48
41,
49
43,
50
52,

3,

20,
22,
24,
26,
28,
37,
39,
41,
43,
45,
54,
56,
58,
60,
62,

71,

.804056
.804056
.853042
.853042
.853042
.853042
.902028
.902028
.902028
.902028
.902028
.902028
.902028
.902028
.951014
.951014
.951014
.951014
1.

e e e

18,
20,
22,
24,
26,
35,
37,
39,
41,
43,
52,
54,
56,
58,
60,

69,

13,
14,
15,
16,
17,
30,
31,
32,
33,
34,
47,
48,
49,
50,
51,

64,

134



112,

121,
32,
123,
33,
125,
34,
127,
35,
129,

138,

140,

56,
58,
60,
62,
71,
73,
75,
77,
79,
79,
62,
45,
28,
11,
105,
107,
109,
111,
113,
122,
124,
126,
128,
130,
139,
141,
143,
145,
147,

156,

73,
75,
77,
79,
88,
90,
92,
94,
96,
105,
107,
109,
111,
113,
122,
124,
126,
128,
130,
139,
141,
143,
145,
147,
156,
158,
160,
162,
164,

173,

71,
73,
75,
77,
86,
88,
90,
92,
94,
103,
105,
107,
109,
111,
120,
122,
124,
126,
128,
137,
139,
141,
143,
145,
154,
156,
158,
160,
162,

171,

55,
57,
59,
61,
70,
72,
74,
76,
78,
85,
68,
51,
34,
17,
104,
106,
108,
110,
112,
121,
123,
125,
127,
129,
138,
140,
142,
144,
146,

155,

65,
66,
67,
68,
81,
82,
83,
84,
85,
98,
99,
100,
101,
102,
115,
11e,
117,
118,
119,
132,
133,
134,
135,
136,
149,
150,
151,
152,
153,

166,

135



172,

176,

178,
50,
180,
51,
188,
52,
190,
53,
192,

194,
55,
196,
56,
203,
57,
205,
58,
207,
59,
209,

211,
61,
218,
62,
220,

222,

250,

73,

252,

74,

254,

75,

256,
*ELEMENT,

165
156,
166
158,
167
160,
168
162,
169
86,
182
88,
183
90,
184
92,
185
94,
186
187,
197
189,
198
191,
199
193,
200
195,
201
202,
212
204,
213
200,
214
208,
215
210,
216
217,
227
219,
228
221,
229
223,
230
225,
231
232,
242
234,
243
230,
244
238,
245
240,
246
TYPE=CPES,

158,
160,
162,
164,

88,

90,

92,

94,

96,
189,
191,
193,
195,
103,
204,
206,
208,
210,
120,
219,
221,
223,
225,
137,
234,
236,
238,
240,

154,

175,
177,
179,
181,
189,
191,
193,
195,
103,
204,
206,
208,
210,
120,
219,
221,
223,
225,
137,
234,
236,
238,
240,
154,
249,
251,
253,
255,

171,

ELSET=MATRIX

173,
175,
177,
179,
187,
189,
191,
193,
195,
202,
204,
206,
208,
210,
217,
219,
221,
223,
225,
232,
234,
236,
238,
240,
247,
249,
251,
253,

255,

157,
159,
161,
163,

87,

89,

91,

93,

95,
188,
190,
192,
194,
19¢,
203,
205,
207,
209,
211,
218,
220,
222,
224,
226,
233,
235,
237,
239,

241,

167,
168,
169,
170,
183,
184,
185,
186,

97,
198,
199,
200,
201,
114,
213,
214,
215,
216,
131,
228,
229,
230,
231,
148,
243,
244,
245,
246,

165,

136



76,
264,

266,
78,
268,
79,
270,
80,
272,
81,
281,
82,
283,

285,
84,
287,
85,
289,
86,
298,
87,
300,
88,
302,

304,
90,
306,
91,
315,
92,
317,
93,
319,
94,
321,

323,

96,
332,

97,
334,

98,
336,

99,
338,
100,
340,
101,
349,
102,
351,
103,
353,
104,
355,
105,
357,

171,
257
173,
258
175,
259
177,
260
179,
261
263,
274
265,
275
267,
276
269,
277
271,
278
280,
291
282,
292
284,
293
286,
294
288,
295
297,
308
299,
309
301,
310
303,
311
305,
312
247,
325
249,
326
251,
327
253,
328
255,
329
331,
342
333,
343
335,
344
337,
345
339,
346

173,
175,
177,
179,
181,
265,
267,
269,
271,
273,
282,
284,
286,
288,
290,
299,
301,
303,
305,
307,
249,
251,
253,
255,
171,
333,
335,
337,
339,

341,

265,
267,
269,
271,
273,
282,
284,
286,
288,
290,
299,
301,
303,
305,
307,
316,
318,
320,
322,
324,
333,
335,
337,
339,
341,
350,
352,
354,
356,

358,

263,
265,
267,
269,
271,
280,
282,
284,
286,
288,
297,
299,
301,
303,
305,
314,
316,
318,
320,
322,
331,
333,
335,
337,
339,
348,
350,
352,
354,

356,

172,
174,
176,
178,
180,
264,
266,
268,
270,
272,
281,
283,
285,
287,
289,
298,
300,
302,
304,
306,
248,
250,
252,
254,
256,
332,
334,
336,
338,

340,

258,
259,
260,
261,
262,
275,
276,
277,
278,
279,
292,
293,
294,
295,
296,
309,
310,
311,
312,
313,
326,
327,
328,
329,
330,
343,
344,
345,
346,

347,

137



106,
366,
107,
368,
108,
370,
1009,
372,
110,
374,
111,
383,
112,
385,
113,
387,
114,
389,
115,
391,
116,
397,
117,
399,
118,
401,
119,
403,
120,
409,
121,
411,
122,
413,
123,
415,
124,
421,
125,
423,
126,
425,
127,
427,
128,
433,
129,
435,
130,
437,
131,
439,

* x

** particle
* %
*ORIENTATION,
0.,
0.
3,

348,
359
350,
360
352,
361
354,
362
356,
363
365,
376
367,
377
369,
378
371,
379
373,
380
171,
330
263,
393
280,
394
297,
395
341,
347
398,
405
400,
406
402,
407
358,
364
410,
417
412,
418
414,
419
375,
381
422,
429
424,
430
426,
431

350,
352,
354,
356,
358,
367,
369,
371,
373,
375,
263,
280,
297,
314,
398,
400,
402,
404,
410,
412,
414,
416,
422,
424,
426,

428,

367,
369,
371,
373,
375,
384,
386,
388,
390,
392,
398,
400,
402,
404,
410,
412,
414,
416,
422,
424,
426,
428,
434,
436,
438,

440,

SYSTEM=R, NAME=0ID1

0.,

365,
367,
369,
371,
373,
382,
384,
386,
388,
390,
341,
398,
400,
402,
358,
410,
412,
414,
375,
422,
424,
426,
392,
434,
436,

438,

349,
351,
353,
355,
357,
366,
368,
370,
372,
374,
257,
274,
291,
308,
397,
399,
401,
403,
4009,
411,
413,
415,
421,
423,
425,

427,

360,
361,
362,
363,
364,
377,
378,
379,
380,
381,
393,
394,
395,
396,
405,
406,
407,
408,
417,
418,
419,
420,
429,
430,
431,

432,

*SOLID SECTION, ELSET=PARTICLE, MATERIAL=WOOD, ORIENTATION=0IDI1
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* %

** matrix

* %

*SOLID SECTION, ELSET=MATRIX, MATERIAL=PLASTIC, ORIENTATION=0IDI1
1.,

* %

** wood

** Date: 15-Feb-:0 Time: 11:39:27

* %

*MATERIAL, NAME=WOOD
* *
*ELASTIC, TYPE=ENGINEERING CONSTANTS
1.6+6 1.6+5 1.6+5 0.4 0.4 0.4 80000.
80000.
16000.
* %
** plastic
** Date: 15-Feb-:0 Time: 11:39:27

* x

*MATERIAL, NAME=PLASTIC

* %

*ELASTIC, TYPE=ISO
200000., 0.4

* K

** Step 1, stepl

** LoadCase, uniform_disp

* %

*STEP, AMPLITUDE=RAMP, PERTURBATION

* %
*STATIC
* *
* K
* %
** axis left
* %
*BOUNDARY, OP=NEW
1,
1,
12,
18,
29,
35,
46,
52,
63,
69,
80,
86,
182,
187,
197,
202,
212,
217,
227,
232,
242,
247,
325,

N N N N N N N N SN N SN SN NS S S SN NS NS S~ 0~
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331, 1,, 0.
342, 1,, 0.
348, 1,, 0.
359, 1,, 0.
365, 1,, 0.
376, 1,, 0.
382, 1,, 0.

* x

** axis bottom
* %

*BOUNDARY, OP=NEW

2, 24, 0.
3, 2,, 0.
4, 2,, 0.
5, 2,, 0.
6, 2,, 0.
T, 2,, 0.
8, 2,, 0.
9, 2,, 0.
10, 2,, 0.
11, 2,, 0.
102, 2,, 0.
113, 2,, 0.
119, 2,, 0.
130, 2,, 0.
136, 2,, 0.
147, 2,, 0.
153, 2,, 0.
le64, 2,, 0.
170, 2,, 0.
181, 2,, 0.
262, 2,, 0.
273, 2,, 0.
279, 2,, 0.
290, 2,, 0.
296, 2,, 0.
307, 2,, 0.
313, 2,, 0.

* %

** uniform disp
* K

*BOUNDARY, OP=NEW

314, 1,, 0.001
315, 1,, 0.001
316, 1,, 0.001
317, 1,, 0.001
318, 1,, 0.001
319, 1,, 0.001
320, 1,, 0.001
321, 1,, 0.001
322, 1,, 0.001
323, 1,, 0.001
324, 1,, 0.001
324, 2,, 0.
396, 1,, 0.001
404, 1,, 0.001
408, 1,, 0.001
416, 1,, 0.001
420, 1,, 0.001
428, 1,, 0.001



* x

432,
440,

1,, 0.001
1,, 0.001

*CLOAD, OP=NEW
*DLOAD, OP=NEW
*TEMPERATURE, OP=NEW

* x

*NODE PRINT, FREQ=1

U,
RF,

*NODE FILE,

U,
RF,
* %

* x

*EL
* %

*EL
* %

*EL
* %

*EL
* %

*EL
* %

*EL
* %

PRINT,

FILE,

PRINT,
FILE,
PRINT,
FILE,
PRINT,

FILE,

FREQ=1

POS=INTEG, FREQ=1

POS=INTEG, FREQ=1

POS=NODES, FREQ=0
POS=NODES, FREQ=0
POS=CENTR, FREQ=0
POS=CENTR, FREQ=0
POS=AVERAGE, FREQ=0

POS=AVERAGE, FREQ=0

*MODAL PRINT, FREQ=99999

* %

*MODAL FILE, FREQ=99999

* x

*ENERGY PRINT, FREQ=0

* %

*ENERGY FILE, FREQ=0

* x

*PRINT,

* %

*END STEP

FREQ=1
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